x, y мәнін табыңыз
x=6
y=7
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
x+y=13,2x-y=5
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
x+y=13
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
x=-y+13
Теңдеудің екі жағынан y санын алып тастаңыз.
2\left(-y+13\right)-y=5
Басқа теңдеуде -y+13 мәнін x мәнімен ауыстырыңыз, 2x-y=5.
-2y+26-y=5
2 санын -y+13 санына көбейтіңіз.
-3y+26=5
-2y санын -y санына қосу.
-3y=-21
Теңдеудің екі жағынан 26 санын алып тастаңыз.
y=7
Екі жағын да -3 санына бөліңіз.
x=-7+13
x=-y+13 теңдеуінде 7 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=6
13 санын -7 санына қосу.
x=6,y=7
Жүйедегі ақаулар енді шешілді.
x+y=13,2x-y=5
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\5\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}13\\5\end{matrix}\right)
Теңдеуді \left(\begin{matrix}1&1\\2&-1\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}13\\5\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}13\\5\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2}&-\frac{1}{-1-2}\\-\frac{2}{-1-2}&\frac{1}{-1-2}\end{matrix}\right)\left(\begin{matrix}13\\5\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}13\\5\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 13+\frac{1}{3}\times 5\\\frac{2}{3}\times 13-\frac{1}{3}\times 5\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\7\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=6,y=7
x және y матрица элементтерін шығарыңыз.
x+y=13,2x-y=5
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
2x+2y=2\times 13,2x-y=5
x және 2x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 2 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 1 санына көбейтіңіз.
2x+2y=26,2x-y=5
Қысқартыңыз.
2x-2x+2y+y=26-5
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 2x-y=5 мәнін 2x+2y=26 мәнінен алып тастаңыз.
2y+y=26-5
2x санын -2x санына қосу. 2x және -2x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
3y=26-5
2y санын y санына қосу.
3y=21
26 санын -5 санына қосу.
y=7
Екі жағын да 3 санына бөліңіз.
2x-7=5
2x-y=5 теңдеуінде 7 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
2x=12
Теңдеудің екі жағына да 7 санын қосыңыз.
x=6
Екі жағын да 2 санына бөліңіз.
x=6,y=7
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}