x, y мәнін табыңыз
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
y = \frac{25}{3} = 8\frac{1}{3} \approx 8.333333333
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
x\times 5-y=0
Екінші теңдеуді шешіңіз. Екі жағынан да y мәнін қысқартыңыз.
x+y=10,5x-y=0
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
x+y=10
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
x=-y+10
Теңдеудің екі жағынан y санын алып тастаңыз.
5\left(-y+10\right)-y=0
Басқа теңдеуде -y+10 мәнін x мәнімен ауыстырыңыз, 5x-y=0.
-5y+50-y=0
5 санын -y+10 санына көбейтіңіз.
-6y+50=0
-5y санын -y санына қосу.
-6y=-50
Теңдеудің екі жағынан 50 санын алып тастаңыз.
y=\frac{25}{3}
Екі жағын да -6 санына бөліңіз.
x=-\frac{25}{3}+10
x=-y+10 теңдеуінде \frac{25}{3} мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=\frac{5}{3}
10 санын -\frac{25}{3} санына қосу.
x=\frac{5}{3},y=\frac{25}{3}
Жүйедегі ақаулар енді шешілді.
x\times 5-y=0
Екінші теңдеуді шешіңіз. Екі жағынан да y мәнін қысқартыңыз.
x+y=10,5x-y=0
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}1&1\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\0\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}1&1\\5&-1\end{matrix}\right))\left(\begin{matrix}1&1\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&-1\end{matrix}\right))\left(\begin{matrix}10\\0\end{matrix}\right)
Теңдеуді \left(\begin{matrix}1&1\\5&-1\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&-1\end{matrix}\right))\left(\begin{matrix}10\\0\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&-1\end{matrix}\right))\left(\begin{matrix}10\\0\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-5}&-\frac{1}{-1-5}\\-\frac{5}{-1-5}&\frac{1}{-1-5}\end{matrix}\right)\left(\begin{matrix}10\\0\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\\frac{5}{6}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}10\\0\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 10\\\frac{5}{6}\times 10\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}\\\frac{25}{3}\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=\frac{5}{3},y=\frac{25}{3}
x және y матрица элементтерін шығарыңыз.
x\times 5-y=0
Екінші теңдеуді шешіңіз. Екі жағынан да y мәнін қысқартыңыз.
x+y=10,5x-y=0
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
5x+5y=5\times 10,5x-y=0
x және 5x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 5 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 1 санына көбейтіңіз.
5x+5y=50,5x-y=0
Қысқартыңыз.
5x-5x+5y+y=50
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 5x-y=0 мәнін 5x+5y=50 мәнінен алып тастаңыз.
5y+y=50
5x санын -5x санына қосу. 5x және -5x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
6y=50
5y санын y санына қосу.
y=\frac{25}{3}
Екі жағын да 6 санына бөліңіз.
5x-\frac{25}{3}=0
5x-y=0 теңдеуінде \frac{25}{3} мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
5x=\frac{25}{3}
Теңдеудің екі жағына да \frac{25}{3} санын қосыңыз.
x=\frac{5}{3}
Екі жағын да 5 санына бөліңіз.
x=\frac{5}{3},y=\frac{25}{3}
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}