x, y мәнін табыңыз
x=-2
y=3
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
y-2x=7
Екінші теңдеуді шешіңіз. Екі жағынан да 2x мәнін қысқартыңыз.
x+2y=4,-2x+y=7
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
x+2y=4
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
x=-2y+4
Теңдеудің екі жағынан 2y санын алып тастаңыз.
-2\left(-2y+4\right)+y=7
Басқа теңдеуде -2y+4 мәнін x мәнімен ауыстырыңыз, -2x+y=7.
4y-8+y=7
-2 санын -2y+4 санына көбейтіңіз.
5y-8=7
4y санын y санына қосу.
5y=15
Теңдеудің екі жағына да 8 санын қосыңыз.
y=3
Екі жағын да 5 санына бөліңіз.
x=-2\times 3+4
x=-2y+4 теңдеуінде 3 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=-6+4
-2 санын 3 санына көбейтіңіз.
x=-2
4 санын -6 санына қосу.
x=-2,y=3
Жүйедегі ақаулар енді шешілді.
y-2x=7
Екінші теңдеуді шешіңіз. Екі жағынан да 2x мәнін қысқартыңыз.
x+2y=4,-2x+y=7
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}1&2\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\7\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}1&2\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
Теңдеуді \left(\begin{matrix}1&2\\-2&1\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\left(-2\right)}&-\frac{2}{1-2\left(-2\right)}\\-\frac{-2}{1-2\left(-2\right)}&\frac{1}{1-2\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}4\\7\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&-\frac{2}{5}\\\frac{2}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}4\\7\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 4-\frac{2}{5}\times 7\\\frac{2}{5}\times 4+\frac{1}{5}\times 7\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\3\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=-2,y=3
x және y матрица элементтерін шығарыңыз.
y-2x=7
Екінші теңдеуді шешіңіз. Екі жағынан да 2x мәнін қысқартыңыз.
x+2y=4,-2x+y=7
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
-2x-2\times 2y=-2\times 4,-2x+y=7
x және -2x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді -2 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 1 санына көбейтіңіз.
-2x-4y=-8,-2x+y=7
Қысқартыңыз.
-2x+2x-4y-y=-8-7
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы -2x+y=7 мәнін -2x-4y=-8 мәнінен алып тастаңыз.
-4y-y=-8-7
-2x санын 2x санына қосу. -2x және 2x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
-5y=-8-7
-4y санын -y санына қосу.
-5y=-15
-8 санын -7 санына қосу.
y=3
Екі жағын да -5 санына бөліңіз.
-2x+3=7
-2x+y=7 теңдеуінде 3 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
-2x=4
Теңдеудің екі жағынан 3 санын алып тастаңыз.
x=-2
Екі жағын да -2 санына бөліңіз.
x=-2,y=3
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}