x, y мәнін табыңыз
x=2
y=3
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
5x-y=7,3x+2y=12
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
5x-y=7
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
5x=y+7
Теңдеудің екі жағына да y санын қосыңыз.
x=\frac{1}{5}\left(y+7\right)
Екі жағын да 5 санына бөліңіз.
x=\frac{1}{5}y+\frac{7}{5}
\frac{1}{5} санын y+7 санына көбейтіңіз.
3\left(\frac{1}{5}y+\frac{7}{5}\right)+2y=12
Басқа теңдеуде \frac{7+y}{5} мәнін x мәнімен ауыстырыңыз, 3x+2y=12.
\frac{3}{5}y+\frac{21}{5}+2y=12
3 санын \frac{7+y}{5} санына көбейтіңіз.
\frac{13}{5}y+\frac{21}{5}=12
\frac{3y}{5} санын 2y санына қосу.
\frac{13}{5}y=\frac{39}{5}
Теңдеудің екі жағынан \frac{21}{5} санын алып тастаңыз.
y=3
Теңдеудің екі жағын да \frac{13}{5} санына бөліңіз, ол екі жағын да кері бөлшекке көбейткенмен тең.
x=\frac{1}{5}\times 3+\frac{7}{5}
x=\frac{1}{5}y+\frac{7}{5} теңдеуінде 3 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=\frac{3+7}{5}
\frac{1}{5} санын 3 санына көбейтіңіз.
x=2
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы \frac{7}{5} бөлшегіне \frac{3}{5} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
x=2,y=3
Жүйедегі ақаулар енді шешілді.
5x-y=7,3x+2y=12
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}5&-1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\12\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}5&-1\\3&2\end{matrix}\right))\left(\begin{matrix}5&-1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\3&2\end{matrix}\right))\left(\begin{matrix}7\\12\end{matrix}\right)
Теңдеуді \left(\begin{matrix}5&-1\\3&2\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\3&2\end{matrix}\right))\left(\begin{matrix}7\\12\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\3&2\end{matrix}\right))\left(\begin{matrix}7\\12\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-3\right)}&-\frac{-1}{5\times 2-\left(-3\right)}\\-\frac{3}{5\times 2-\left(-3\right)}&\frac{5}{5\times 2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}7\\12\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&\frac{1}{13}\\-\frac{3}{13}&\frac{5}{13}\end{matrix}\right)\left(\begin{matrix}7\\12\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}\times 7+\frac{1}{13}\times 12\\-\frac{3}{13}\times 7+\frac{5}{13}\times 12\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=2,y=3
x және y матрица элементтерін шығарыңыз.
5x-y=7,3x+2y=12
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
3\times 5x+3\left(-1\right)y=3\times 7,5\times 3x+5\times 2y=5\times 12
5x және 3x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 3 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 5 санына көбейтіңіз.
15x-3y=21,15x+10y=60
Қысқартыңыз.
15x-15x-3y-10y=21-60
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 15x+10y=60 мәнін 15x-3y=21 мәнінен алып тастаңыз.
-3y-10y=21-60
15x санын -15x санына қосу. 15x және -15x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
-13y=21-60
-3y санын -10y санына қосу.
-13y=-39
21 санын -60 санына қосу.
y=3
Екі жағын да -13 санына бөліңіз.
3x+2\times 3=12
3x+2y=12 теңдеуінде 3 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
3x+6=12
2 санын 3 санына көбейтіңіз.
3x=6
Теңдеудің екі жағынан 6 санын алып тастаңыз.
x=2
Екі жағын да 3 санына бөліңіз.
x=2,y=3
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}