y, x мәнін табыңыз
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
y=1
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
4-y-2x=0
Бірінші теңдеуді шешіңіз. Екі жағынан да 2x мәнін қысқартыңыз.
-y-2x=-4
Екі жағынан да 4 мәнін қысқартыңыз. Нөлден алынған кез келген сан теріс мәнді береді.
2+y-2x=0
Екінші теңдеуді шешіңіз. Екі жағынан да 2x мәнін қысқартыңыз.
y-2x=-2
Екі жағынан да 2 мәнін қысқартыңыз. Нөлден алынған кез келген сан теріс мәнді береді.
-y-2x=-4,y-2x=-2
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
-y-2x=-4
Теңдеулердің бірін таңдаңыз және y мәнін теңдік белгінің сол жағына шығару арқылы y мәнін шешіңіз.
-y=2x-4
Теңдеудің екі жағына да 2x санын қосыңыз.
y=-\left(2x-4\right)
Екі жағын да -1 санына бөліңіз.
y=-2x+4
-1 санын -4+2x санына көбейтіңіз.
-2x+4-2x=-2
Басқа теңдеуде -2x+4 мәнін y мәнімен ауыстырыңыз, y-2x=-2.
-4x+4=-2
-2x санын -2x санына қосу.
-4x=-6
Теңдеудің екі жағынан 4 санын алып тастаңыз.
x=\frac{3}{2}
Екі жағын да -4 санына бөліңіз.
y=-2\times \frac{3}{2}+4
y=-2x+4 теңдеуінде \frac{3}{2} мәнін x мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, y мәнін тікелей таба аласыз.
y=-3+4
-2 санын \frac{3}{2} санына көбейтіңіз.
y=1
4 санын -3 санына қосу.
y=1,x=\frac{3}{2}
Жүйедегі ақаулар енді шешілді.
4-y-2x=0
Бірінші теңдеуді шешіңіз. Екі жағынан да 2x мәнін қысқартыңыз.
-y-2x=-4
Екі жағынан да 4 мәнін қысқартыңыз. Нөлден алынған кез келген сан теріс мәнді береді.
2+y-2x=0
Екінші теңдеуді шешіңіз. Екі жағынан да 2x мәнін қысқартыңыз.
y-2x=-2
Екі жағынан да 2 мәнін қысқартыңыз. Нөлден алынған кез келген сан теріс мәнді береді.
-y-2x=-4,y-2x=-2
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}-1&-2\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-4\\-2\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}-1&-2\\1&-2\end{matrix}\right))\left(\begin{matrix}-1&-2\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-2\\1&-2\end{matrix}\right))\left(\begin{matrix}-4\\-2\end{matrix}\right)
Теңдеуді \left(\begin{matrix}-1&-2\\1&-2\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-2\\1&-2\end{matrix}\right))\left(\begin{matrix}-4\\-2\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-2\\1&-2\end{matrix}\right))\left(\begin{matrix}-4\\-2\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-\left(-2\right)-\left(-2\right)}&-\frac{-2}{-\left(-2\right)-\left(-2\right)}\\-\frac{1}{-\left(-2\right)-\left(-2\right)}&-\frac{1}{-\left(-2\right)-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-4\\-2\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\-\frac{1}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-4\\-2\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\left(-4\right)+\frac{1}{2}\left(-2\right)\\-\frac{1}{4}\left(-4\right)-\frac{1}{4}\left(-2\right)\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\\frac{3}{2}\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
y=1,x=\frac{3}{2}
y және x матрица элементтерін шығарыңыз.
4-y-2x=0
Бірінші теңдеуді шешіңіз. Екі жағынан да 2x мәнін қысқартыңыз.
-y-2x=-4
Екі жағынан да 4 мәнін қысқартыңыз. Нөлден алынған кез келген сан теріс мәнді береді.
2+y-2x=0
Екінші теңдеуді шешіңіз. Екі жағынан да 2x мәнін қысқартыңыз.
y-2x=-2
Екі жағынан да 2 мәнін қысқартыңыз. Нөлден алынған кез келген сан теріс мәнді береді.
-y-2x=-4,y-2x=-2
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
-y-y-2x+2x=-4+2
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы y-2x=-2 мәнін -y-2x=-4 мәнінен алып тастаңыз.
-y-y=-4+2
-2x санын 2x санына қосу. -2x және 2x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
-2y=-4+2
-y санын -y санына қосу.
-2y=-2
-4 санын 2 санына қосу.
y=1
Екі жағын да -2 санына бөліңіз.
1-2x=-2
y-2x=-2 теңдеуінде 1 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
-2x=-3
Теңдеудің екі жағынан 1 санын алып тастаңыз.
y=1,x=\frac{3}{2}
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}