Негізгі мазмұнды өткізіп жіберу
x, y мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

3x-y=3,x-y=-1
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
3x-y=3
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
3x=y+3
Теңдеудің екі жағына да y санын қосыңыз.
x=\frac{1}{3}\left(y+3\right)
Екі жағын да 3 санына бөліңіз.
x=\frac{1}{3}y+1
\frac{1}{3} санын y+3 санына көбейтіңіз.
\frac{1}{3}y+1-y=-1
Басқа теңдеуде \frac{y}{3}+1 мәнін x мәнімен ауыстырыңыз, x-y=-1.
-\frac{2}{3}y+1=-1
\frac{y}{3} санын -y санына қосу.
-\frac{2}{3}y=-2
Теңдеудің екі жағынан 1 санын алып тастаңыз.
y=3
Теңдеудің екі жағын да -\frac{2}{3} санына бөліңіз, ол екі жағын да кері бөлшекке көбейткенмен тең.
x=\frac{1}{3}\times 3+1
x=\frac{1}{3}y+1 теңдеуінде 3 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=1+1
\frac{1}{3} санын 3 санына көбейтіңіз.
x=2
1 санын 1 санына қосу.
x=2,y=3
Жүйедегі ақаулар енді шешілді.
3x-y=3,x-y=-1
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Теңдеуді \left(\begin{matrix}3&-1\\1&-1\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-1\right)}&-\frac{-1}{3\left(-1\right)-\left(-1\right)}\\-\frac{1}{3\left(-1\right)-\left(-1\right)}&\frac{3}{3\left(-1\right)-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 3-\frac{1}{2}\left(-1\right)\\\frac{1}{2}\times 3-\frac{3}{2}\left(-1\right)\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=2,y=3
x және y матрица элементтерін шығарыңыз.
3x-y=3,x-y=-1
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
3x-x-y+y=3+1
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы x-y=-1 мәнін 3x-y=3 мәнінен алып тастаңыз.
3x-x=3+1
-y санын y санына қосу. -y және y мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
2x=3+1
3x санын -x санына қосу.
2x=4
3 санын 1 санына қосу.
x=2
Екі жағын да 2 санына бөліңіз.
2-y=-1
x-y=-1 теңдеуінде 2 мәнін x мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, y мәнін тікелей таба аласыз.
-y=-3
Теңдеудің екі жағынан 2 санын алып тастаңыз.
x=2,y=3
Жүйедегі ақаулар енді шешілді.