x, y мәнін табыңыз
x=\frac{10}{11}\approx 0.909090909
y = \frac{15}{11} = 1\frac{4}{11} \approx 1.363636364
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
3x-2y=0,4x+y=5
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
3x-2y=0
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
3x=2y
Теңдеудің екі жағына да 2y санын қосыңыз.
x=\frac{1}{3}\times 2y
Екі жағын да 3 санына бөліңіз.
x=\frac{2}{3}y
\frac{1}{3} санын 2y санына көбейтіңіз.
4\times \frac{2}{3}y+y=5
Басқа теңдеуде \frac{2y}{3} мәнін x мәнімен ауыстырыңыз, 4x+y=5.
\frac{8}{3}y+y=5
4 санын \frac{2y}{3} санына көбейтіңіз.
\frac{11}{3}y=5
\frac{8y}{3} санын y санына қосу.
y=\frac{15}{11}
Теңдеудің екі жағын да \frac{11}{3} санына бөліңіз, ол екі жағын да кері бөлшекке көбейткенмен тең.
x=\frac{2}{3}\times \frac{15}{11}
x=\frac{2}{3}y теңдеуінде \frac{15}{11} мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=\frac{10}{11}
Бөлгішін бөлгішіне және алымын алымына көбейту арқылы \frac{15}{11} санын \frac{2}{3} санына көбейтіңіз. Содан кейін бөлшекті барынша қысқартыңыз.
x=\frac{10}{11},y=\frac{15}{11}
Жүйедегі ақаулар енді шешілді.
3x-2y=0,4x+y=5
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}3&-2\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\5\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}3&-2\\4&1\end{matrix}\right))\left(\begin{matrix}3&-2\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\4&1\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
Теңдеуді \left(\begin{matrix}3&-2\\4&1\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\4&1\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\4&1\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-2\times 4\right)}&-\frac{-2}{3-\left(-2\times 4\right)}\\-\frac{4}{3-\left(-2\times 4\right)}&\frac{3}{3-\left(-2\times 4\right)}\end{matrix}\right)\left(\begin{matrix}0\\5\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&\frac{2}{11}\\-\frac{4}{11}&\frac{3}{11}\end{matrix}\right)\left(\begin{matrix}0\\5\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}\times 5\\\frac{3}{11}\times 5\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{11}\\\frac{15}{11}\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=\frac{10}{11},y=\frac{15}{11}
x және y матрица элементтерін шығарыңыз.
3x-2y=0,4x+y=5
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
4\times 3x+4\left(-2\right)y=0,3\times 4x+3y=3\times 5
3x және 4x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 4 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 3 санына көбейтіңіз.
12x-8y=0,12x+3y=15
Қысқартыңыз.
12x-12x-8y-3y=-15
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 12x+3y=15 мәнін 12x-8y=0 мәнінен алып тастаңыз.
-8y-3y=-15
12x санын -12x санына қосу. 12x және -12x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
-11y=-15
-8y санын -3y санына қосу.
y=\frac{15}{11}
Екі жағын да -11 санына бөліңіз.
4x+\frac{15}{11}=5
4x+y=5 теңдеуінде \frac{15}{11} мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
4x=\frac{40}{11}
Теңдеудің екі жағынан \frac{15}{11} санын алып тастаңыз.
x=\frac{10}{11}
Екі жағын да 4 санына бөліңіз.
x=\frac{10}{11},y=\frac{15}{11}
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}