x, y мәнін табыңыз
x=3
y=0
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
3x+y=9,2x-3y=6
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
3x+y=9
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
3x=-y+9
Теңдеудің екі жағынан y санын алып тастаңыз.
x=\frac{1}{3}\left(-y+9\right)
Екі жағын да 3 санына бөліңіз.
x=-\frac{1}{3}y+3
\frac{1}{3} санын -y+9 санына көбейтіңіз.
2\left(-\frac{1}{3}y+3\right)-3y=6
Басқа теңдеуде -\frac{y}{3}+3 мәнін x мәнімен ауыстырыңыз, 2x-3y=6.
-\frac{2}{3}y+6-3y=6
2 санын -\frac{y}{3}+3 санына көбейтіңіз.
-\frac{11}{3}y+6=6
-\frac{2y}{3} санын -3y санына қосу.
-\frac{11}{3}y=0
Теңдеудің екі жағынан 6 санын алып тастаңыз.
y=0
Теңдеудің екі жағын да -\frac{11}{3} санына бөліңіз, ол екі жағын да кері бөлшекке көбейткенмен тең.
x=3
x=-\frac{1}{3}y+3 теңдеуінде 0 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=3,y=0
Жүйедегі ақаулар енді шешілді.
3x+y=9,2x-3y=6
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}3&1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\6\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}3&1\\2&-3\end{matrix}\right))\left(\begin{matrix}3&1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-3\end{matrix}\right))\left(\begin{matrix}9\\6\end{matrix}\right)
Теңдеуді \left(\begin{matrix}3&1\\2&-3\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-3\end{matrix}\right))\left(\begin{matrix}9\\6\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-3\end{matrix}\right))\left(\begin{matrix}9\\6\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{3\left(-3\right)-2}&-\frac{1}{3\left(-3\right)-2}\\-\frac{2}{3\left(-3\right)-2}&\frac{3}{3\left(-3\right)-2}\end{matrix}\right)\left(\begin{matrix}9\\6\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}&\frac{1}{11}\\\frac{2}{11}&-\frac{3}{11}\end{matrix}\right)\left(\begin{matrix}9\\6\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}\times 9+\frac{1}{11}\times 6\\\frac{2}{11}\times 9-\frac{3}{11}\times 6\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\0\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=3,y=0
x және y матрица элементтерін шығарыңыз.
3x+y=9,2x-3y=6
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
2\times 3x+2y=2\times 9,3\times 2x+3\left(-3\right)y=3\times 6
3x және 2x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 2 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 3 санына көбейтіңіз.
6x+2y=18,6x-9y=18
Қысқартыңыз.
6x-6x+2y+9y=18-18
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 6x-9y=18 мәнін 6x+2y=18 мәнінен алып тастаңыз.
2y+9y=18-18
6x санын -6x санына қосу. 6x және -6x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
11y=18-18
2y санын 9y санына қосу.
11y=0
18 санын -18 санына қосу.
y=0
Екі жағын да 11 санына бөліңіз.
2x=6
2x-3y=6 теңдеуінде 0 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=3
Екі жағын да 2 санына бөліңіз.
x=3,y=0
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}