x, y мәнін табыңыз
x=15
y=10
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
3x+4y=85,x+y=25
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
3x+4y=85
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
3x=-4y+85
Теңдеудің екі жағынан 4y санын алып тастаңыз.
x=\frac{1}{3}\left(-4y+85\right)
Екі жағын да 3 санына бөліңіз.
x=-\frac{4}{3}y+\frac{85}{3}
\frac{1}{3} санын -4y+85 санына көбейтіңіз.
-\frac{4}{3}y+\frac{85}{3}+y=25
Басқа теңдеуде \frac{-4y+85}{3} мәнін x мәнімен ауыстырыңыз, x+y=25.
-\frac{1}{3}y+\frac{85}{3}=25
-\frac{4y}{3} санын y санына қосу.
-\frac{1}{3}y=-\frac{10}{3}
Теңдеудің екі жағынан \frac{85}{3} санын алып тастаңыз.
y=10
Екі жағын да -3 мәніне көбейтіңіз.
x=-\frac{4}{3}\times 10+\frac{85}{3}
x=-\frac{4}{3}y+\frac{85}{3} теңдеуінде 10 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=\frac{-40+85}{3}
-\frac{4}{3} санын 10 санына көбейтіңіз.
x=15
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы \frac{85}{3} бөлшегіне -\frac{40}{3} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
x=15,y=10
Жүйедегі ақаулар енді шешілді.
3x+4y=85,x+y=25
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}3&4\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}85\\25\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}3&4\\1&1\end{matrix}\right))\left(\begin{matrix}3&4\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\1&1\end{matrix}\right))\left(\begin{matrix}85\\25\end{matrix}\right)
Теңдеуді \left(\begin{matrix}3&4\\1&1\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\1&1\end{matrix}\right))\left(\begin{matrix}85\\25\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\1&1\end{matrix}\right))\left(\begin{matrix}85\\25\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-4}&-\frac{4}{3-4}\\-\frac{1}{3-4}&\frac{3}{3-4}\end{matrix}\right)\left(\begin{matrix}85\\25\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&4\\1&-3\end{matrix}\right)\left(\begin{matrix}85\\25\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-85+4\times 25\\85-3\times 25\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\10\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=15,y=10
x және y матрица элементтерін шығарыңыз.
3x+4y=85,x+y=25
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
3x+4y=85,3x+3y=3\times 25
3x және x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 1 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 3 санына көбейтіңіз.
3x+4y=85,3x+3y=75
Қысқартыңыз.
3x-3x+4y-3y=85-75
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 3x+3y=75 мәнін 3x+4y=85 мәнінен алып тастаңыз.
4y-3y=85-75
3x санын -3x санына қосу. 3x және -3x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
y=85-75
4y санын -3y санына қосу.
y=10
85 санын -75 санына қосу.
x+10=25
x+y=25 теңдеуінде 10 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=15
Теңдеудің екі жағынан 10 санын алып тастаңыз.
x=15,y=10
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}