x, y мәнін табыңыз
x=5
y=-1
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
3x+3y=12,3x+2y=13
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
3x+3y=12
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
3x=-3y+12
Теңдеудің екі жағынан 3y санын алып тастаңыз.
x=\frac{1}{3}\left(-3y+12\right)
Екі жағын да 3 санына бөліңіз.
x=-y+4
\frac{1}{3} санын -3y+12 санына көбейтіңіз.
3\left(-y+4\right)+2y=13
Басқа теңдеуде -y+4 мәнін x мәнімен ауыстырыңыз, 3x+2y=13.
-3y+12+2y=13
3 санын -y+4 санына көбейтіңіз.
-y+12=13
-3y санын 2y санына қосу.
-y=1
Теңдеудің екі жағынан 12 санын алып тастаңыз.
y=-1
Екі жағын да -1 санына бөліңіз.
x=-\left(-1\right)+4
x=-y+4 теңдеуінде -1 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=1+4
-1 санын -1 санына көбейтіңіз.
x=5
4 санын 1 санына қосу.
x=5,y=-1
Жүйедегі ақаулар енді шешілді.
3x+3y=12,3x+2y=13
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}3&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\13\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}3&3\\3&2\end{matrix}\right))\left(\begin{matrix}3&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&3\\3&2\end{matrix}\right))\left(\begin{matrix}12\\13\end{matrix}\right)
Теңдеуді \left(\begin{matrix}3&3\\3&2\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&3\\3&2\end{matrix}\right))\left(\begin{matrix}12\\13\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&3\\3&2\end{matrix}\right))\left(\begin{matrix}12\\13\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-3\times 3}&-\frac{3}{3\times 2-3\times 3}\\-\frac{3}{3\times 2-3\times 3}&\frac{3}{3\times 2-3\times 3}\end{matrix}\right)\left(\begin{matrix}12\\13\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}&1\\1&-1\end{matrix}\right)\left(\begin{matrix}12\\13\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}\times 12+13\\12-13\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-1\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=5,y=-1
x және y матрица элементтерін шығарыңыз.
3x+3y=12,3x+2y=13
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
3x-3x+3y-2y=12-13
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 3x+2y=13 мәнін 3x+3y=12 мәнінен алып тастаңыз.
3y-2y=12-13
3x санын -3x санына қосу. 3x және -3x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
y=12-13
3y санын -2y санына қосу.
y=-1
12 санын -13 санына қосу.
3x+2\left(-1\right)=13
3x+2y=13 теңдеуінде -1 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
3x-2=13
2 санын -1 санына көбейтіңіз.
3x=15
Теңдеудің екі жағына да 2 санын қосыңыз.
x=5
Екі жағын да 3 санына бөліңіз.
x=5,y=-1
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}