x, y мәнін табыңыз
x=4
y=3
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
2x-3y=-1,5x+2y=26
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
2x-3y=-1
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
2x=3y-1
Теңдеудің екі жағына да 3y санын қосыңыз.
x=\frac{1}{2}\left(3y-1\right)
Екі жағын да 2 санына бөліңіз.
x=\frac{3}{2}y-\frac{1}{2}
\frac{1}{2} санын 3y-1 санына көбейтіңіз.
5\left(\frac{3}{2}y-\frac{1}{2}\right)+2y=26
Басқа теңдеуде \frac{3y-1}{2} мәнін x мәнімен ауыстырыңыз, 5x+2y=26.
\frac{15}{2}y-\frac{5}{2}+2y=26
5 санын \frac{3y-1}{2} санына көбейтіңіз.
\frac{19}{2}y-\frac{5}{2}=26
\frac{15y}{2} санын 2y санына қосу.
\frac{19}{2}y=\frac{57}{2}
Теңдеудің екі жағына да \frac{5}{2} санын қосыңыз.
y=3
Теңдеудің екі жағын да \frac{19}{2} санына бөліңіз, ол екі жағын да кері бөлшекке көбейткенмен тең.
x=\frac{3}{2}\times 3-\frac{1}{2}
x=\frac{3}{2}y-\frac{1}{2} теңдеуінде 3 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=\frac{9-1}{2}
\frac{3}{2} санын 3 санына көбейтіңіз.
x=4
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы -\frac{1}{2} бөлшегіне \frac{9}{2} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
x=4,y=3
Жүйедегі ақаулар енді шешілді.
2x-3y=-1,5x+2y=26
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}2&-3\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\26\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}2&-3\\5&2\end{matrix}\right))\left(\begin{matrix}2&-3\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&2\end{matrix}\right))\left(\begin{matrix}-1\\26\end{matrix}\right)
Теңдеуді \left(\begin{matrix}2&-3\\5&2\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&2\end{matrix}\right))\left(\begin{matrix}-1\\26\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&2\end{matrix}\right))\left(\begin{matrix}-1\\26\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-3\times 5\right)}&-\frac{-3}{2\times 2-\left(-3\times 5\right)}\\-\frac{5}{2\times 2-\left(-3\times 5\right)}&\frac{2}{2\times 2-\left(-3\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-1\\26\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}&\frac{3}{19}\\-\frac{5}{19}&\frac{2}{19}\end{matrix}\right)\left(\begin{matrix}-1\\26\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}\left(-1\right)+\frac{3}{19}\times 26\\-\frac{5}{19}\left(-1\right)+\frac{2}{19}\times 26\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=4,y=3
x және y матрица элементтерін шығарыңыз.
2x-3y=-1,5x+2y=26
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
5\times 2x+5\left(-3\right)y=5\left(-1\right),2\times 5x+2\times 2y=2\times 26
2x және 5x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 5 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 2 санына көбейтіңіз.
10x-15y=-5,10x+4y=52
Қысқартыңыз.
10x-10x-15y-4y=-5-52
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 10x+4y=52 мәнін 10x-15y=-5 мәнінен алып тастаңыз.
-15y-4y=-5-52
10x санын -10x санына қосу. 10x және -10x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
-19y=-5-52
-15y санын -4y санына қосу.
-19y=-57
-5 санын -52 санына қосу.
y=3
Екі жағын да -19 санына бөліңіз.
5x+2\times 3=26
5x+2y=26 теңдеуінде 3 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
5x+6=26
2 санын 3 санына көбейтіңіз.
5x=20
Теңдеудің екі жағынан 6 санын алып тастаңыз.
x=4
Екі жағын да 5 санына бөліңіз.
x=4,y=3
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}