Негізгі мазмұнды өткізіп жіберу
x, y мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

-4x+3y=-5,-7x+3y=-20
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
-4x+3y=-5
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
-4x=-3y-5
Теңдеудің екі жағынан 3y санын алып тастаңыз.
x=-\frac{1}{4}\left(-3y-5\right)
Екі жағын да -4 санына бөліңіз.
x=\frac{3}{4}y+\frac{5}{4}
-\frac{1}{4} санын -3y-5 санына көбейтіңіз.
-7\left(\frac{3}{4}y+\frac{5}{4}\right)+3y=-20
Басқа теңдеуде \frac{3y+5}{4} мәнін x мәнімен ауыстырыңыз, -7x+3y=-20.
-\frac{21}{4}y-\frac{35}{4}+3y=-20
-7 санын \frac{3y+5}{4} санына көбейтіңіз.
-\frac{9}{4}y-\frac{35}{4}=-20
-\frac{21y}{4} санын 3y санына қосу.
-\frac{9}{4}y=-\frac{45}{4}
Теңдеудің екі жағына да \frac{35}{4} санын қосыңыз.
y=5
Теңдеудің екі жағын да -\frac{9}{4} санына бөліңіз, ол екі жағын да кері бөлшекке көбейткенмен тең.
x=\frac{3}{4}\times 5+\frac{5}{4}
x=\frac{3}{4}y+\frac{5}{4} теңдеуінде 5 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=\frac{15+5}{4}
\frac{3}{4} санын 5 санына көбейтіңіз.
x=5
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы \frac{5}{4} бөлшегіне \frac{15}{4} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
x=5,y=5
Жүйедегі ақаулар енді шешілді.
-4x+3y=-5,-7x+3y=-20
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}-4&3\\-7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\-20\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}-4&3\\-7&3\end{matrix}\right))\left(\begin{matrix}-4&3\\-7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&3\\-7&3\end{matrix}\right))\left(\begin{matrix}-5\\-20\end{matrix}\right)
Теңдеуді \left(\begin{matrix}-4&3\\-7&3\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&3\\-7&3\end{matrix}\right))\left(\begin{matrix}-5\\-20\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&3\\-7&3\end{matrix}\right))\left(\begin{matrix}-5\\-20\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{-4\times 3-3\left(-7\right)}&-\frac{3}{-4\times 3-3\left(-7\right)}\\-\frac{-7}{-4\times 3-3\left(-7\right)}&-\frac{4}{-4\times 3-3\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}-5\\-20\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{1}{3}\\\frac{7}{9}&-\frac{4}{9}\end{matrix}\right)\left(\begin{matrix}-5\\-20\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\left(-5\right)-\frac{1}{3}\left(-20\right)\\\frac{7}{9}\left(-5\right)-\frac{4}{9}\left(-20\right)\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\5\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=5,y=5
x және y матрица элементтерін шығарыңыз.
-4x+3y=-5,-7x+3y=-20
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
-4x+7x+3y-3y=-5+20
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы -7x+3y=-20 мәнін -4x+3y=-5 мәнінен алып тастаңыз.
-4x+7x=-5+20
3y санын -3y санына қосу. 3y және -3y мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
3x=-5+20
-4x санын 7x санына қосу.
3x=15
-5 санын 20 санына қосу.
x=5
Екі жағын да 3 санына бөліңіз.
-7\times 5+3y=-20
-7x+3y=-20 теңдеуінде 5 мәнін x мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, y мәнін тікелей таба аласыз.
-35+3y=-20
-7 санын 5 санына көбейтіңіз.
3y=15
Теңдеудің екі жағына да 35 санын қосыңыз.
y=5
Екі жағын да 3 санына бөліңіз.
x=5,y=5
Жүйедегі ақаулар енді шешілді.