x, y мәнін табыңыз
x=-2
y=2
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
-3x+y=8,-8x+2y=20
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
-3x+y=8
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
-3x=-y+8
Теңдеудің екі жағынан y санын алып тастаңыз.
x=-\frac{1}{3}\left(-y+8\right)
Екі жағын да -3 санына бөліңіз.
x=\frac{1}{3}y-\frac{8}{3}
-\frac{1}{3} санын -y+8 санына көбейтіңіз.
-8\left(\frac{1}{3}y-\frac{8}{3}\right)+2y=20
Басқа теңдеуде \frac{-8+y}{3} мәнін x мәнімен ауыстырыңыз, -8x+2y=20.
-\frac{8}{3}y+\frac{64}{3}+2y=20
-8 санын \frac{-8+y}{3} санына көбейтіңіз.
-\frac{2}{3}y+\frac{64}{3}=20
-\frac{8y}{3} санын 2y санына қосу.
-\frac{2}{3}y=-\frac{4}{3}
Теңдеудің екі жағынан \frac{64}{3} санын алып тастаңыз.
y=2
Теңдеудің екі жағын да -\frac{2}{3} санына бөліңіз, ол екі жағын да кері бөлшекке көбейткенмен тең.
x=\frac{1}{3}\times 2-\frac{8}{3}
x=\frac{1}{3}y-\frac{8}{3} теңдеуінде 2 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=\frac{2-8}{3}
\frac{1}{3} санын 2 санына көбейтіңіз.
x=-2
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы -\frac{8}{3} бөлшегіне \frac{2}{3} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
x=-2,y=2
Жүйедегі ақаулар енді шешілді.
-3x+y=8,-8x+2y=20
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}-3&1\\-8&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\20\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}-3&1\\-8&2\end{matrix}\right))\left(\begin{matrix}-3&1\\-8&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&1\\-8&2\end{matrix}\right))\left(\begin{matrix}8\\20\end{matrix}\right)
Теңдеуді \left(\begin{matrix}-3&1\\-8&2\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&1\\-8&2\end{matrix}\right))\left(\begin{matrix}8\\20\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&1\\-8&2\end{matrix}\right))\left(\begin{matrix}8\\20\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-3\times 2-\left(-8\right)}&-\frac{1}{-3\times 2-\left(-8\right)}\\-\frac{-8}{-3\times 2-\left(-8\right)}&-\frac{3}{-3\times 2-\left(-8\right)}\end{matrix}\right)\left(\begin{matrix}8\\20\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-\frac{1}{2}\\4&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}8\\20\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8-\frac{1}{2}\times 20\\4\times 8-\frac{3}{2}\times 20\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\2\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=-2,y=2
x және y матрица элементтерін шығарыңыз.
-3x+y=8,-8x+2y=20
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
-8\left(-3\right)x-8y=-8\times 8,-3\left(-8\right)x-3\times 2y=-3\times 20
-3x және -8x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді -8 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді -3 санына көбейтіңіз.
24x-8y=-64,24x-6y=-60
Қысқартыңыз.
24x-24x-8y+6y=-64+60
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 24x-6y=-60 мәнін 24x-8y=-64 мәнінен алып тастаңыз.
-8y+6y=-64+60
24x санын -24x санына қосу. 24x және -24x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
-2y=-64+60
-8y санын 6y санына қосу.
-2y=-4
-64 санын 60 санына қосу.
y=2
Екі жағын да -2 санына бөліңіз.
-8x+2\times 2=20
-8x+2y=20 теңдеуінде 2 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
-8x+4=20
2 санын 2 санына көбейтіңіз.
-8x=16
Теңдеудің екі жағынан 4 санын алып тастаңыз.
x=-2
Екі жағын да -8 санына бөліңіз.
x=-2,y=2
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}