x, y мәнін табыңыз
x=1
y=1
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
-2x+3y=1,3x-4y=-1
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
-2x+3y=1
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
-2x=-3y+1
Теңдеудің екі жағынан 3y санын алып тастаңыз.
x=-\frac{1}{2}\left(-3y+1\right)
Екі жағын да -2 санына бөліңіз.
x=\frac{3}{2}y-\frac{1}{2}
-\frac{1}{2} санын -3y+1 санына көбейтіңіз.
3\left(\frac{3}{2}y-\frac{1}{2}\right)-4y=-1
Басқа теңдеуде \frac{3y-1}{2} мәнін x мәнімен ауыстырыңыз, 3x-4y=-1.
\frac{9}{2}y-\frac{3}{2}-4y=-1
3 санын \frac{3y-1}{2} санына көбейтіңіз.
\frac{1}{2}y-\frac{3}{2}=-1
\frac{9y}{2} санын -4y санына қосу.
\frac{1}{2}y=\frac{1}{2}
Теңдеудің екі жағына да \frac{3}{2} санын қосыңыз.
y=1
Екі жағын да 2 мәніне көбейтіңіз.
x=\frac{3-1}{2}
x=\frac{3}{2}y-\frac{1}{2} теңдеуінде 1 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=1
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы -\frac{1}{2} бөлшегіне \frac{3}{2} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
x=1,y=1
Жүйедегі ақаулар енді шешілді.
-2x+3y=1,3x-4y=-1
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}-2&3\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}-2&3\\3&-4\end{matrix}\right))\left(\begin{matrix}-2&3\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\3&-4\end{matrix}\right))\left(\begin{matrix}1\\-1\end{matrix}\right)
Теңдеуді \left(\begin{matrix}-2&3\\3&-4\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\3&-4\end{matrix}\right))\left(\begin{matrix}1\\-1\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\3&-4\end{matrix}\right))\left(\begin{matrix}1\\-1\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-2\left(-4\right)-3\times 3}&-\frac{3}{-2\left(-4\right)-3\times 3}\\-\frac{3}{-2\left(-4\right)-3\times 3}&-\frac{2}{-2\left(-4\right)-3\times 3}\end{matrix}\right)\left(\begin{matrix}1\\-1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4&3\\3&2\end{matrix}\right)\left(\begin{matrix}1\\-1\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4+3\left(-1\right)\\3+2\left(-1\right)\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=1,y=1
x және y матрица элементтерін шығарыңыз.
-2x+3y=1,3x-4y=-1
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
3\left(-2\right)x+3\times 3y=3,-2\times 3x-2\left(-4\right)y=-2\left(-1\right)
-2x және 3x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 3 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді -2 санына көбейтіңіз.
-6x+9y=3,-6x+8y=2
Қысқартыңыз.
-6x+6x+9y-8y=3-2
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы -6x+8y=2 мәнін -6x+9y=3 мәнінен алып тастаңыз.
9y-8y=3-2
-6x санын 6x санына қосу. -6x және 6x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
y=3-2
9y санын -8y санына қосу.
y=1
3 санын -2 санына қосу.
3x-4=-1
3x-4y=-1 теңдеуінде 1 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
3x=3
Теңдеудің екі жағына да 4 санын қосыңыз.
x=1
Екі жағын да 3 санына бөліңіз.
x=1,y=1
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}