x, y мәнін табыңыз
x=1
y=1
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
-10x+2y=-8,10x-y=9
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
-10x+2y=-8
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
-10x=-2y-8
Теңдеудің екі жағынан 2y санын алып тастаңыз.
x=-\frac{1}{10}\left(-2y-8\right)
Екі жағын да -10 санына бөліңіз.
x=\frac{1}{5}y+\frac{4}{5}
-\frac{1}{10} санын -2y-8 санына көбейтіңіз.
10\left(\frac{1}{5}y+\frac{4}{5}\right)-y=9
Басқа теңдеуде \frac{4+y}{5} мәнін x мәнімен ауыстырыңыз, 10x-y=9.
2y+8-y=9
10 санын \frac{4+y}{5} санына көбейтіңіз.
y+8=9
2y санын -y санына қосу.
y=1
Теңдеудің екі жағынан 8 санын алып тастаңыз.
x=\frac{1+4}{5}
x=\frac{1}{5}y+\frac{4}{5} теңдеуінде 1 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=1
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы \frac{4}{5} бөлшегіне \frac{1}{5} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
x=1,y=1
Жүйедегі ақаулар енді шешілді.
-10x+2y=-8,10x-y=9
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}-10&2\\10&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8\\9\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}-10&2\\10&-1\end{matrix}\right))\left(\begin{matrix}-10&2\\10&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&2\\10&-1\end{matrix}\right))\left(\begin{matrix}-8\\9\end{matrix}\right)
Теңдеуді \left(\begin{matrix}-10&2\\10&-1\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&2\\10&-1\end{matrix}\right))\left(\begin{matrix}-8\\9\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&2\\10&-1\end{matrix}\right))\left(\begin{matrix}-8\\9\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-10\left(-1\right)-2\times 10}&-\frac{2}{-10\left(-1\right)-2\times 10}\\-\frac{10}{-10\left(-1\right)-2\times 10}&-\frac{10}{-10\left(-1\right)-2\times 10}\end{matrix}\right)\left(\begin{matrix}-8\\9\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{1}{5}\\1&1\end{matrix}\right)\left(\begin{matrix}-8\\9\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\left(-8\right)+\frac{1}{5}\times 9\\-8+9\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=1,y=1
x және y матрица элементтерін шығарыңыз.
-10x+2y=-8,10x-y=9
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
10\left(-10\right)x+10\times 2y=10\left(-8\right),-10\times 10x-10\left(-1\right)y=-10\times 9
-10x және 10x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 10 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді -10 санына көбейтіңіз.
-100x+20y=-80,-100x+10y=-90
Қысқартыңыз.
-100x+100x+20y-10y=-80+90
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы -100x+10y=-90 мәнін -100x+20y=-80 мәнінен алып тастаңыз.
20y-10y=-80+90
-100x санын 100x санына қосу. -100x және 100x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
10y=-80+90
20y санын -10y санына қосу.
10y=10
-80 санын 90 санына қосу.
y=1
Екі жағын да 10 санына бөліңіз.
10x-1=9
10x-y=9 теңдеуінде 1 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
10x=10
Теңдеудің екі жағына да 1 санын қосыңыз.
x=1
Екі жағын да 10 санына бөліңіз.
x=1,y=1
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}