Негізгі мазмұнды өткізіп жіберу
x мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

3x^{2}-13x+12=\left(x-3\right)\times 2x
x-3 мәнін 3x-4 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз және ұқсас мүшелерді біріктіріңіз.
3x^{2}-13x+12=\left(2x-6\right)x
x-3 мәнін 2 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
3x^{2}-13x+12=2x^{2}-6x
2x-6 мәнін x мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
3x^{2}-13x+12-2x^{2}=-6x
Екі жағынан да 2x^{2} мәнін қысқартыңыз.
x^{2}-13x+12=-6x
3x^{2} және -2x^{2} мәндерін қоссаңыз, x^{2} мәні шығады.
x^{2}-13x+12+6x=0
Екі жағына 6x қосу.
x^{2}-7x+12=0
-13x және 6x мәндерін қоссаңыз, -7x мәні шығады.
a+b=-7 ab=12
Теңдеуді шешу үшін x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) формуласын қолданып, x^{2}-7x+12 мәнін көбейткіштерге жіктеңіз. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
-1,-12 -2,-6 -3,-4
ab оң болғандықтан, a және b белгілері бірдей болады. a+b теріс болғандықтан, a және b мәндері теріс болады. Көбейтіндісі 12 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
-1-12=-13 -2-6=-8 -3-4=-7
Әр жұптың қосындысын есептеңіз.
a=-4 b=-3
Шешім — бұл -7 қосындысын беретін жұп.
\left(x-4\right)\left(x-3\right)
Алынған мәндерді пайдаланып, көбейткішке жіктелген \left(x+a\right)\left(x+b\right) өрнегін қайта жазыңыз.
x=4 x=3
Теңдеулердің шешімін табу үшін, x-4=0 және x-3=0 теңдіктерін шешіңіз.
3x^{2}-13x+12=\left(x-3\right)\times 2x
x-3 мәнін 3x-4 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз және ұқсас мүшелерді біріктіріңіз.
3x^{2}-13x+12=\left(2x-6\right)x
x-3 мәнін 2 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
3x^{2}-13x+12=2x^{2}-6x
2x-6 мәнін x мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
3x^{2}-13x+12-2x^{2}=-6x
Екі жағынан да 2x^{2} мәнін қысқартыңыз.
x^{2}-13x+12=-6x
3x^{2} және -2x^{2} мәндерін қоссаңыз, x^{2} мәні шығады.
x^{2}-13x+12+6x=0
Екі жағына 6x қосу.
x^{2}-7x+12=0
-13x және 6x мәндерін қоссаңыз, -7x мәні шығады.
a+b=-7 ab=1\times 12=12
Теңдеуді шешу үшін, сол жағын топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, сол жағы x^{2}+ax+bx+12 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
-1,-12 -2,-6 -3,-4
ab оң болғандықтан, a және b белгілері бірдей болады. a+b теріс болғандықтан, a және b мәндері теріс болады. Көбейтіндісі 12 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
-1-12=-13 -2-6=-8 -3-4=-7
Әр жұптың қосындысын есептеңіз.
a=-4 b=-3
Шешім — бұл -7 қосындысын беретін жұп.
\left(x^{2}-4x\right)+\left(-3x+12\right)
x^{2}-7x+12 мәнін \left(x^{2}-4x\right)+\left(-3x+12\right) ретінде қайта жазыңыз.
x\left(x-4\right)-3\left(x-4\right)
Бірінші топтағы x ортақ көбейткішін және екінші топтағы -3 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(x-4\right)\left(x-3\right)
Үлестіру сипаты арқылы x-4 ортақ көбейткішін жақша сыртына шығарыңыз.
x=4 x=3
Теңдеулердің шешімін табу үшін, x-4=0 және x-3=0 теңдіктерін шешіңіз.
3x^{2}-13x+12=\left(x-3\right)\times 2x
x-3 мәнін 3x-4 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз және ұқсас мүшелерді біріктіріңіз.
3x^{2}-13x+12=\left(2x-6\right)x
x-3 мәнін 2 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
3x^{2}-13x+12=2x^{2}-6x
2x-6 мәнін x мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
3x^{2}-13x+12-2x^{2}=-6x
Екі жағынан да 2x^{2} мәнін қысқартыңыз.
x^{2}-13x+12=-6x
3x^{2} және -2x^{2} мәндерін қоссаңыз, x^{2} мәні шығады.
x^{2}-13x+12+6x=0
Екі жағына 6x қосу.
x^{2}-7x+12=0
-13x және 6x мәндерін қоссаңыз, -7x мәні шығады.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 12}}{2}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 1 санын a мәніне, -7 санын b мәніне және 12 санын c мәніне ауыстырыңыз.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 12}}{2}
-7 санының квадратын шығарыңыз.
x=\frac{-\left(-7\right)±\sqrt{49-48}}{2}
-4 санын 12 санына көбейтіңіз.
x=\frac{-\left(-7\right)±\sqrt{1}}{2}
49 санын -48 санына қосу.
x=\frac{-\left(-7\right)±1}{2}
1 санының квадраттық түбірін шығарыңыз.
x=\frac{7±1}{2}
-7 санына қарама-қарсы сан 7 мәніне тең.
x=\frac{8}{2}
Енді ± плюс болған кездегі x=\frac{7±1}{2} теңдеуін шешіңіз. 7 санын 1 санына қосу.
x=4
8 санын 2 санына бөліңіз.
x=\frac{6}{2}
Енді ± минус болған кездегі x=\frac{7±1}{2} теңдеуін шешіңіз. 1 мәнінен 7 мәнін алу.
x=3
6 санын 2 санына бөліңіз.
x=4 x=3
Теңдеу енді шешілді.
3x^{2}-13x+12=\left(x-3\right)\times 2x
x-3 мәнін 3x-4 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз және ұқсас мүшелерді біріктіріңіз.
3x^{2}-13x+12=\left(2x-6\right)x
x-3 мәнін 2 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
3x^{2}-13x+12=2x^{2}-6x
2x-6 мәнін x мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
3x^{2}-13x+12-2x^{2}=-6x
Екі жағынан да 2x^{2} мәнін қысқартыңыз.
x^{2}-13x+12=-6x
3x^{2} және -2x^{2} мәндерін қоссаңыз, x^{2} мәні шығады.
x^{2}-13x+12+6x=0
Екі жағына 6x қосу.
x^{2}-7x+12=0
-13x және 6x мәндерін қоссаңыз, -7x мәні шығады.
x^{2}-7x=-12
Екі жағынан да 12 мәнін қысқартыңыз. Нөлден алынған кез келген сан теріс мәнді береді.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-12+\left(-\frac{7}{2}\right)^{2}
x бос мүшесінің коэффициенті болып табылатын -7 санын 2 мәніне бөлсеңіз, -\frac{7}{2} саны шығады. Содан соң, теңдеудің екі жағына -\frac{7}{2} квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}-7x+\frac{49}{4}=-12+\frac{49}{4}
Бөлшектің алымы мен бөлімінің квадратын шығару арқылы -\frac{7}{2} бөлшегінің квадратын табыңыз.
x^{2}-7x+\frac{49}{4}=\frac{1}{4}
-12 санын \frac{49}{4} санына қосу.
\left(x-\frac{7}{2}\right)^{2}=\frac{1}{4}
x^{2}-7x+\frac{49}{4} көбейткіштерге жіктеу. Әдетте, x^{2}+bx+c толық квадрат болса, оны әрдайым \left(x+\frac{b}{2}\right)^{2} түрінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x-\frac{7}{2}=\frac{1}{2} x-\frac{7}{2}=-\frac{1}{2}
Қысқартыңыз.
x=4 x=3
Теңдеудің екі жағына да \frac{7}{2} санын қосыңыз.