x мәнін табыңыз
x = \frac{\sqrt{553} + 29}{6} \approx 8.752658672
x=\frac{29-\sqrt{553}}{6}\approx 0.914007995
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
4x^{2}-20x+25-\left(x+1\right)^{2}=7x
\left(2x-5\right)^{2} формуласын жіктеу үшін \left(a-b\right)^{2}=a^{2}-2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
4x^{2}-20x+25-\left(x^{2}+2x+1\right)=7x
\left(x+1\right)^{2} формуласын жіктеу үшін \left(a+b\right)^{2}=a^{2}+2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
4x^{2}-20x+25-x^{2}-2x-1=7x
x^{2}+2x+1 теңдеуінің қарсы мәнін табу үшін, әр мүшенің қарсы мәнін табыңыз.
3x^{2}-20x+25-2x-1=7x
4x^{2} және -x^{2} мәндерін қоссаңыз, 3x^{2} мәні шығады.
3x^{2}-22x+25-1=7x
-20x және -2x мәндерін қоссаңыз, -22x мәні шығады.
3x^{2}-22x+24=7x
24 мәнін алу үшін, 25 мәнінен 1 мәнін алып тастаңыз.
3x^{2}-22x+24-7x=0
Екі жағынан да 7x мәнін қысқартыңыз.
3x^{2}-29x+24=0
-22x және -7x мәндерін қоссаңыз, -29x мәні шығады.
x=\frac{-\left(-29\right)±\sqrt{\left(-29\right)^{2}-4\times 3\times 24}}{2\times 3}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 3 санын a мәніне, -29 санын b мәніне және 24 санын c мәніне ауыстырыңыз.
x=\frac{-\left(-29\right)±\sqrt{841-4\times 3\times 24}}{2\times 3}
-29 санының квадратын шығарыңыз.
x=\frac{-\left(-29\right)±\sqrt{841-12\times 24}}{2\times 3}
-4 санын 3 санына көбейтіңіз.
x=\frac{-\left(-29\right)±\sqrt{841-288}}{2\times 3}
-12 санын 24 санына көбейтіңіз.
x=\frac{-\left(-29\right)±\sqrt{553}}{2\times 3}
841 санын -288 санына қосу.
x=\frac{29±\sqrt{553}}{2\times 3}
-29 санына қарама-қарсы сан 29 мәніне тең.
x=\frac{29±\sqrt{553}}{6}
2 санын 3 санына көбейтіңіз.
x=\frac{\sqrt{553}+29}{6}
Енді ± плюс болған кездегі x=\frac{29±\sqrt{553}}{6} теңдеуін шешіңіз. 29 санын \sqrt{553} санына қосу.
x=\frac{29-\sqrt{553}}{6}
Енді ± минус болған кездегі x=\frac{29±\sqrt{553}}{6} теңдеуін шешіңіз. \sqrt{553} мәнінен 29 мәнін алу.
x=\frac{\sqrt{553}+29}{6} x=\frac{29-\sqrt{553}}{6}
Теңдеу енді шешілді.
4x^{2}-20x+25-\left(x+1\right)^{2}=7x
\left(2x-5\right)^{2} формуласын жіктеу үшін \left(a-b\right)^{2}=a^{2}-2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
4x^{2}-20x+25-\left(x^{2}+2x+1\right)=7x
\left(x+1\right)^{2} формуласын жіктеу үшін \left(a+b\right)^{2}=a^{2}+2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
4x^{2}-20x+25-x^{2}-2x-1=7x
x^{2}+2x+1 теңдеуінің қарсы мәнін табу үшін, әр мүшенің қарсы мәнін табыңыз.
3x^{2}-20x+25-2x-1=7x
4x^{2} және -x^{2} мәндерін қоссаңыз, 3x^{2} мәні шығады.
3x^{2}-22x+25-1=7x
-20x және -2x мәндерін қоссаңыз, -22x мәні шығады.
3x^{2}-22x+24=7x
24 мәнін алу үшін, 25 мәнінен 1 мәнін алып тастаңыз.
3x^{2}-22x+24-7x=0
Екі жағынан да 7x мәнін қысқартыңыз.
3x^{2}-29x+24=0
-22x және -7x мәндерін қоссаңыз, -29x мәні шығады.
3x^{2}-29x=-24
Екі жағынан да 24 мәнін қысқартыңыз. Нөлден алынған кез келген сан теріс мәнді береді.
\frac{3x^{2}-29x}{3}=-\frac{24}{3}
Екі жағын да 3 санына бөліңіз.
x^{2}-\frac{29}{3}x=-\frac{24}{3}
3 санына бөлген кезде 3 санына көбейту әрекетінің күшін жояды.
x^{2}-\frac{29}{3}x=-8
-24 санын 3 санына бөліңіз.
x^{2}-\frac{29}{3}x+\left(-\frac{29}{6}\right)^{2}=-8+\left(-\frac{29}{6}\right)^{2}
x бос мүшесінің коэффициенті болып табылатын -\frac{29}{3} санын 2 мәніне бөлсеңіз, -\frac{29}{6} саны шығады. Содан соң, теңдеудің екі жағына -\frac{29}{6} квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}-\frac{29}{3}x+\frac{841}{36}=-8+\frac{841}{36}
Бөлшектің алымы мен бөлімінің квадратын шығару арқылы -\frac{29}{6} бөлшегінің квадратын табыңыз.
x^{2}-\frac{29}{3}x+\frac{841}{36}=\frac{553}{36}
-8 санын \frac{841}{36} санына қосу.
\left(x-\frac{29}{6}\right)^{2}=\frac{553}{36}
x^{2}-\frac{29}{3}x+\frac{841}{36} көбейткіштерге жіктеу. Әдетте, x^{2}+bx+c толық квадрат болса, оны әрдайым \left(x+\frac{b}{2}\right)^{2} түрінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x-\frac{29}{6}\right)^{2}}=\sqrt{\frac{553}{36}}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x-\frac{29}{6}=\frac{\sqrt{553}}{6} x-\frac{29}{6}=-\frac{\sqrt{553}}{6}
Қысқартыңыз.
x=\frac{\sqrt{553}+29}{6} x=\frac{29-\sqrt{553}}{6}
Теңдеудің екі жағына да \frac{29}{6} санын қосыңыз.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}