\left. \begin{array} { l } { f {(x)} = {(x + 3)} }\\ { g = f {(3)} }\\ { h = g }\\ { i = h }\\ { j = i }\\ { k = j }\\ { l = k }\\ { m = l }\\ { n = m }\\ { o = n }\\ { \text{Solve for } p \text{ where} } \\ { p = o } \end{array} \right.
f, x, g, h, j, k, l, m, n, o, p мәнін табыңыз
p=i
Ортақ пайдалану
Алмасу буферіне көшірілген
h=i
Төртінші теңдеуді шешіңіз. Теңдеу жақтарын барлық белгісіз мүшелері сол жағында болатындай етіп ауыстырыңыз.
i=g
Үшінші теңдеуді шешіңіз. Айнымалылардың белгілі мәндерін теңдеуге кірістіріңіз.
g=i
Теңдеу жақтарын барлық белгісіз мүшелері сол жағында болатындай етіп ауыстырыңыз.
i=f\times 3
Екінші теңдеуді шешіңіз. Айнымалылардың белгілі мәндерін теңдеуге кірістіріңіз.
\frac{i}{3}=f
Екі жағын да 3 санына бөліңіз.
\frac{1}{3}i=f
\frac{1}{3}i нәтижесін алу үшін, i мәнін 3 мәніне бөліңіз.
f=\frac{1}{3}i
Теңдеу жақтарын барлық белгісіз мүшелері сол жағында болатындай етіп ауыстырыңыз.
\frac{1}{3}ix=x+3
Бірінші теңдеуді шешіңіз. Айнымалылардың белгілі мәндерін теңдеуге кірістіріңіз.
\frac{1}{3}ix-x=3
Екі жағынан да x мәнін қысқартыңыз.
\left(-1+\frac{1}{3}i\right)x=3
\frac{1}{3}ix және -x мәндерін қоссаңыз, \left(-1+\frac{1}{3}i\right)x мәні шығады.
x=\frac{3}{-1+\frac{1}{3}i}
Екі жағын да -1+\frac{1}{3}i санына бөліңіз.
x=\frac{3\left(-1-\frac{1}{3}i\right)}{\left(-1+\frac{1}{3}i\right)\left(-1-\frac{1}{3}i\right)}
\frac{3}{-1+\frac{1}{3}i} бөлшегінің алымы мен бөлімін бөлгіштің кешенді іргелес санына (-1-\frac{1}{3}i) көбейтіңіз.
x=\frac{-3-i}{\frac{10}{9}}
\frac{3\left(-1-\frac{1}{3}i\right)}{\left(-1+\frac{1}{3}i\right)\left(-1-\frac{1}{3}i\right)} өрнегінде көбейту операциясын орындаңыз.
x=-\frac{27}{10}-\frac{9}{10}i
-\frac{27}{10}-\frac{9}{10}i нәтижесін алу үшін, -3-i мәнін \frac{10}{9} мәніне бөліңіз.
f=\frac{1}{3}i x=-\frac{27}{10}-\frac{9}{10}i g=i h=i j=i k=i l=i m=i n=i o=i p=i
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}