x, y мәнін табыңыз
x=10
y=20
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
x+2y=50,2x+y=40
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
x+2y=50
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
x=-2y+50
Теңдеудің екі жағынан 2y санын алып тастаңыз.
2\left(-2y+50\right)+y=40
Басқа теңдеуде -2y+50 мәнін x мәнімен ауыстырыңыз, 2x+y=40.
-4y+100+y=40
2 санын -2y+50 санына көбейтіңіз.
-3y+100=40
-4y санын y санына қосу.
-3y=-60
Теңдеудің екі жағынан 100 санын алып тастаңыз.
y=20
Екі жағын да -3 санына бөліңіз.
x=-2\times 20+50
x=-2y+50 теңдеуінде 20 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=-40+50
-2 санын 20 санына көбейтіңіз.
x=10
50 санын -40 санына қосу.
x=10,y=20
Жүйедегі ақаулар енді шешілді.
x+2y=50,2x+y=40
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}1&2\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\40\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}1&2\\2&1\end{matrix}\right))\left(\begin{matrix}1&2\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&1\end{matrix}\right))\left(\begin{matrix}50\\40\end{matrix}\right)
Теңдеуді \left(\begin{matrix}1&2\\2&1\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&1\end{matrix}\right))\left(\begin{matrix}50\\40\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&1\end{matrix}\right))\left(\begin{matrix}50\\40\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\times 2}&-\frac{2}{1-2\times 2}\\-\frac{2}{1-2\times 2}&\frac{1}{1-2\times 2}\end{matrix}\right)\left(\begin{matrix}50\\40\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{2}{3}\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}50\\40\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 50+\frac{2}{3}\times 40\\\frac{2}{3}\times 50-\frac{1}{3}\times 40\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\20\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=10,y=20
x және y матрица элементтерін шығарыңыз.
x+2y=50,2x+y=40
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
2x+2\times 2y=2\times 50,2x+y=40
x және 2x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 2 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 1 санына көбейтіңіз.
2x+4y=100,2x+y=40
Қысқартыңыз.
2x-2x+4y-y=100-40
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 2x+y=40 мәнін 2x+4y=100 мәнінен алып тастаңыз.
4y-y=100-40
2x санын -2x санына қосу. 2x және -2x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
3y=100-40
4y санын -y санына қосу.
3y=60
100 санын -40 санына қосу.
y=20
Екі жағын да 3 санына бөліңіз.
2x+20=40
2x+y=40 теңдеуінде 20 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
2x=20
Теңдеудің екі жағынан 20 санын алып тастаңыз.
x=10
Екі жағын да 2 санына бөліңіз.
x=10,y=20
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}