\left\{ \begin{array} { r } { 2 x + 5 y = 9 } \\ { x - y = 5 } \end{array} \right.
x, y мәнін табыңыз
x = \frac{34}{7} = 4\frac{6}{7} \approx 4.857142857
y=-\frac{1}{7}\approx -0.142857143
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
2x+5y=9,x-y=5
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
2x+5y=9
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
2x=-5y+9
Теңдеудің екі жағынан 5y санын алып тастаңыз.
x=\frac{1}{2}\left(-5y+9\right)
Екі жағын да 2 санына бөліңіз.
x=-\frac{5}{2}y+\frac{9}{2}
\frac{1}{2} санын -5y+9 санына көбейтіңіз.
-\frac{5}{2}y+\frac{9}{2}-y=5
Басқа теңдеуде \frac{-5y+9}{2} мәнін x мәнімен ауыстырыңыз, x-y=5.
-\frac{7}{2}y+\frac{9}{2}=5
-\frac{5y}{2} санын -y санына қосу.
-\frac{7}{2}y=\frac{1}{2}
Теңдеудің екі жағынан \frac{9}{2} санын алып тастаңыз.
y=-\frac{1}{7}
Теңдеудің екі жағын да -\frac{7}{2} санына бөліңіз, ол екі жағын да кері бөлшекке көбейткенмен тең.
x=-\frac{5}{2}\left(-\frac{1}{7}\right)+\frac{9}{2}
x=-\frac{5}{2}y+\frac{9}{2} теңдеуінде -\frac{1}{7} мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=\frac{5}{14}+\frac{9}{2}
Бөлгішін бөлгішіне және алымын алымына көбейту арқылы -\frac{1}{7} санын -\frac{5}{2} санына көбейтіңіз. Содан кейін бөлшекті барынша қысқартыңыз.
x=\frac{34}{7}
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы \frac{9}{2} бөлшегіне \frac{5}{14} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
x=\frac{34}{7},y=-\frac{1}{7}
Жүйедегі ақаулар енді шешілді.
2x+5y=9,x-y=5
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}2&5\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\5\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}2&5\\1&-1\end{matrix}\right))\left(\begin{matrix}2&5\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\1&-1\end{matrix}\right))\left(\begin{matrix}9\\5\end{matrix}\right)
Теңдеуді \left(\begin{matrix}2&5\\1&-1\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\1&-1\end{matrix}\right))\left(\begin{matrix}9\\5\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\1&-1\end{matrix}\right))\left(\begin{matrix}9\\5\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-5}&-\frac{5}{2\left(-1\right)-5}\\-\frac{1}{2\left(-1\right)-5}&\frac{2}{2\left(-1\right)-5}\end{matrix}\right)\left(\begin{matrix}9\\5\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{5}{7}\\\frac{1}{7}&-\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}9\\5\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 9+\frac{5}{7}\times 5\\\frac{1}{7}\times 9-\frac{2}{7}\times 5\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{34}{7}\\-\frac{1}{7}\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=\frac{34}{7},y=-\frac{1}{7}
x және y матрица элементтерін шығарыңыз.
2x+5y=9,x-y=5
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
2x+5y=9,2x+2\left(-1\right)y=2\times 5
2x және x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 1 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 2 санына көбейтіңіз.
2x+5y=9,2x-2y=10
Қысқартыңыз.
2x-2x+5y+2y=9-10
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 2x-2y=10 мәнін 2x+5y=9 мәнінен алып тастаңыз.
5y+2y=9-10
2x санын -2x санына қосу. 2x және -2x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
7y=9-10
5y санын 2y санына қосу.
7y=-1
9 санын -10 санына қосу.
y=-\frac{1}{7}
Екі жағын да 7 санына бөліңіз.
x-\left(-\frac{1}{7}\right)=5
x-y=5 теңдеуінде -\frac{1}{7} мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=\frac{34}{7}
Теңдеудің екі жағынан \frac{1}{7} санын алып тастаңыз.
x=\frac{34}{7},y=-\frac{1}{7}
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}