\left\{ \begin{array} { l } { x - 6 y = 3 } \\ { 2 x - 18 y = - 6 } \end{array} \right.
x, y мәнін табыңыз
x=15
y=2
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
x-6y=3,2x-18y=-6
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
x-6y=3
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
x=6y+3
Теңдеудің екі жағына да 6y санын қосыңыз.
2\left(6y+3\right)-18y=-6
Басқа теңдеуде 6y+3 мәнін x мәнімен ауыстырыңыз, 2x-18y=-6.
12y+6-18y=-6
2 санын 6y+3 санына көбейтіңіз.
-6y+6=-6
12y санын -18y санына қосу.
-6y=-12
Теңдеудің екі жағынан 6 санын алып тастаңыз.
y=2
Екі жағын да -6 санына бөліңіз.
x=6\times 2+3
x=6y+3 теңдеуінде 2 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=12+3
6 санын 2 санына көбейтіңіз.
x=15
3 санын 12 санына қосу.
x=15,y=2
Жүйедегі ақаулар енді шешілді.
x-6y=3,2x-18y=-6
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-6\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right))\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right))\left(\begin{matrix}3\\-6\end{matrix}\right)
Теңдеуді \left(\begin{matrix}1&-6\\2&-18\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right))\left(\begin{matrix}3\\-6\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right))\left(\begin{matrix}3\\-6\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{18}{-18-\left(-6\times 2\right)}&-\frac{-6}{-18-\left(-6\times 2\right)}\\-\frac{2}{-18-\left(-6\times 2\right)}&\frac{1}{-18-\left(-6\times 2\right)}\end{matrix}\right)\left(\begin{matrix}3\\-6\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&-1\\\frac{1}{3}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}3\\-6\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\times 3-\left(-6\right)\\\frac{1}{3}\times 3-\frac{1}{6}\left(-6\right)\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\2\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=15,y=2
x және y матрица элементтерін шығарыңыз.
x-6y=3,2x-18y=-6
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
2x+2\left(-6\right)y=2\times 3,2x-18y=-6
x және 2x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 2 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 1 санына көбейтіңіз.
2x-12y=6,2x-18y=-6
Қысқартыңыз.
2x-2x-12y+18y=6+6
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 2x-18y=-6 мәнін 2x-12y=6 мәнінен алып тастаңыз.
-12y+18y=6+6
2x санын -2x санына қосу. 2x және -2x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
6y=6+6
-12y санын 18y санына қосу.
6y=12
6 санын 6 санына қосу.
y=2
Екі жағын да 6 санына бөліңіз.
2x-18\times 2=-6
2x-18y=-6 теңдеуінде 2 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
2x-36=-6
-18 санын 2 санына көбейтіңіз.
2x=30
Теңдеудің екі жағына да 36 санын қосыңыз.
x=15
Екі жағын да 2 санына бөліңіз.
x=15,y=2
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}