\left\{ \begin{array} { l } { x = y + 3 } \\ { 7 x - 5 y = 19 } \end{array} \right.
x, y мәнін табыңыз
x=2
y=-1
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
x-y=3
Бірінші теңдеуді шешіңіз. Екі жағынан да y мәнін қысқартыңыз.
x-y=3,7x-5y=19
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
x-y=3
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
x=y+3
Теңдеудің екі жағына да y санын қосыңыз.
7\left(y+3\right)-5y=19
Басқа теңдеуде y+3 мәнін x мәнімен ауыстырыңыз, 7x-5y=19.
7y+21-5y=19
7 санын y+3 санына көбейтіңіз.
2y+21=19
7y санын -5y санына қосу.
2y=-2
Теңдеудің екі жағынан 21 санын алып тастаңыз.
y=-1
Екі жағын да 2 санына бөліңіз.
x=-1+3
x=y+3 теңдеуінде -1 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=2
3 санын -1 санына қосу.
x=2,y=-1
Жүйедегі ақаулар енді шешілді.
x-y=3
Бірінші теңдеуді шешіңіз. Екі жағынан да y мәнін қысқартыңыз.
x-y=3,7x-5y=19
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}1&-1\\7&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\19\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}1&-1\\7&-5\end{matrix}\right))\left(\begin{matrix}1&-1\\7&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\7&-5\end{matrix}\right))\left(\begin{matrix}3\\19\end{matrix}\right)
Теңдеуді \left(\begin{matrix}1&-1\\7&-5\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\7&-5\end{matrix}\right))\left(\begin{matrix}3\\19\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\7&-5\end{matrix}\right))\left(\begin{matrix}3\\19\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-5-\left(-7\right)}&-\frac{-1}{-5-\left(-7\right)}\\-\frac{7}{-5-\left(-7\right)}&\frac{1}{-5-\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}3\\19\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}&\frac{1}{2}\\-\frac{7}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3\\19\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}\times 3+\frac{1}{2}\times 19\\-\frac{7}{2}\times 3+\frac{1}{2}\times 19\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=2,y=-1
x және y матрица элементтерін шығарыңыз.
x-y=3
Бірінші теңдеуді шешіңіз. Екі жағынан да y мәнін қысқартыңыз.
x-y=3,7x-5y=19
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
7x+7\left(-1\right)y=7\times 3,7x-5y=19
x және 7x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 7 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 1 санына көбейтіңіз.
7x-7y=21,7x-5y=19
Қысқартыңыз.
7x-7x-7y+5y=21-19
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 7x-5y=19 мәнін 7x-7y=21 мәнінен алып тастаңыз.
-7y+5y=21-19
7x санын -7x санына қосу. 7x және -7x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
-2y=21-19
-7y санын 5y санына қосу.
-2y=2
21 санын -19 санына қосу.
y=-1
Екі жағын да -2 санына бөліңіз.
7x-5\left(-1\right)=19
7x-5y=19 теңдеуінде -1 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
7x+5=19
-5 санын -1 санына көбейтіңіз.
7x=14
Теңдеудің екі жағынан 5 санын алып тастаңыз.
x=2
Екі жағын да 7 санына бөліңіз.
x=2,y=-1
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}