Негізгі мазмұнды өткізіп жіберу
x, y мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

x+y=70,x-2y=100
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
x+y=70
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
x=-y+70
Теңдеудің екі жағынан y санын алып тастаңыз.
-y+70-2y=100
Басқа теңдеуде -y+70 мәнін x мәнімен ауыстырыңыз, x-2y=100.
-3y+70=100
-y санын -2y санына қосу.
-3y=30
Теңдеудің екі жағынан 70 санын алып тастаңыз.
y=-10
Екі жағын да -3 санына бөліңіз.
x=-\left(-10\right)+70
x=-y+70 теңдеуінде -10 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=10+70
-1 санын -10 санына көбейтіңіз.
x=80
70 санын 10 санына қосу.
x=80,y=-10
Жүйедегі ақаулар енді шешілді.
x+y=70,x-2y=100
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}70\\100\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}70\\100\end{matrix}\right)
Теңдеуді \left(\begin{matrix}1&1\\1&-2\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}70\\100\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}70\\100\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-1}&-\frac{1}{-2-1}\\-\frac{1}{-2-1}&\frac{1}{-2-1}\end{matrix}\right)\left(\begin{matrix}70\\100\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}70\\100\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 70+\frac{1}{3}\times 100\\\frac{1}{3}\times 70-\frac{1}{3}\times 100\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}80\\-10\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=80,y=-10
x және y матрица элементтерін шығарыңыз.
x+y=70,x-2y=100
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
x-x+y+2y=70-100
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы x-2y=100 мәнін x+y=70 мәнінен алып тастаңыз.
y+2y=70-100
x санын -x санына қосу. x және -x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
3y=70-100
y санын 2y санына қосу.
3y=-30
70 санын -100 санына қосу.
y=-10
Екі жағын да 3 санына бөліңіз.
x-2\left(-10\right)=100
x-2y=100 теңдеуінде -10 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x+20=100
-2 санын -10 санына көбейтіңіз.
x=80
Теңдеудің екі жағынан 20 санын алып тастаңыз.
x=80,y=-10
Жүйедегі ақаулар енді шешілді.