Негізгі мазмұнды өткізіп жіберу
x, y мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

y+2x=7
Екінші теңдеуді шешіңіз. Екі жағына 2x қосу.
x+y=5,2x+y=7
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
x+y=5
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
x=-y+5
Теңдеудің екі жағынан y санын алып тастаңыз.
2\left(-y+5\right)+y=7
Басқа теңдеуде -y+5 мәнін x мәнімен ауыстырыңыз, 2x+y=7.
-2y+10+y=7
2 санын -y+5 санына көбейтіңіз.
-y+10=7
-2y санын y санына қосу.
-y=-3
Теңдеудің екі жағынан 10 санын алып тастаңыз.
y=3
Екі жағын да -1 санына бөліңіз.
x=-3+5
x=-y+5 теңдеуінде 3 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=2
5 санын -3 санына қосу.
x=2,y=3
Жүйедегі ақаулар енді шешілді.
y+2x=7
Екінші теңдеуді шешіңіз. Екі жағына 2x қосу.
x+y=5,2x+y=7
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}1&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}1&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Теңдеуді \left(\begin{matrix}1&1\\2&1\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2}&-\frac{1}{1-2}\\-\frac{2}{1-2}&\frac{1}{1-2}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5+7\\2\times 5-7\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=2,y=3
x және y матрица элементтерін шығарыңыз.
y+2x=7
Екінші теңдеуді шешіңіз. Екі жағына 2x қосу.
x+y=5,2x+y=7
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
x-2x+y-y=5-7
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 2x+y=7 мәнін x+y=5 мәнінен алып тастаңыз.
x-2x=5-7
y санын -y санына қосу. y және -y мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
-x=5-7
x санын -2x санына қосу.
-x=-2
5 санын -7 санына қосу.
x=2
Екі жағын да -1 санына бөліңіз.
2\times 2+y=7
2x+y=7 теңдеуінде 2 мәнін x мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, y мәнін тікелей таба аласыз.
4+y=7
2 санын 2 санына көбейтіңіз.
y=3
Теңдеудің екі жағынан 4 санын алып тастаңыз.
x=2,y=3
Жүйедегі ақаулар енді шешілді.