Негізгі мазмұнды өткізіп жіберу
x, y мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

x+y=5,x-2y=5
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
x+y=5
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
x=-y+5
Теңдеудің екі жағынан y санын алып тастаңыз.
-y+5-2y=5
Басқа теңдеуде -y+5 мәнін x мәнімен ауыстырыңыз, x-2y=5.
-3y+5=5
-y санын -2y санына қосу.
-3y=0
Теңдеудің екі жағынан 5 санын алып тастаңыз.
y=0
Екі жағын да -3 санына бөліңіз.
x=5
x=-y+5 теңдеуінде 0 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=5,y=0
Жүйедегі ақаулар енді шешілді.
x+y=5,x-2y=5
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\5\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
Теңдеуді \left(\begin{matrix}1&1\\1&-2\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-1}&-\frac{1}{-2-1}\\-\frac{1}{-2-1}&\frac{1}{-2-1}\end{matrix}\right)\left(\begin{matrix}5\\5\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}5\\5\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 5+\frac{1}{3}\times 5\\\frac{1}{3}\times 5-\frac{1}{3}\times 5\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\0\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=5,y=0
x және y матрица элементтерін шығарыңыз.
x+y=5,x-2y=5
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
x-x+y+2y=5-5
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы x-2y=5 мәнін x+y=5 мәнінен алып тастаңыз.
y+2y=5-5
x санын -x санына қосу. x және -x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
3y=5-5
y санын 2y санына қосу.
3y=0
5 санын -5 санына қосу.
y=0
Екі жағын да 3 санына бөліңіз.
x=5
x-2y=5 теңдеуінде 0 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=5,y=0
Жүйедегі ақаулар енді шешілді.