\left\{ \begin{array} { l } { x + y = 0 } \\ { x + 10 y = 10 } \end{array} \right.
x, y мәнін табыңыз
x = -\frac{10}{9} = -1\frac{1}{9} \approx -1.111111111
y = \frac{10}{9} = 1\frac{1}{9} \approx 1.111111111
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
x+y=0,x+10y=10
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
x+y=0
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
x=-y
Теңдеудің екі жағынан y санын алып тастаңыз.
-y+10y=10
Басқа теңдеуде -y мәнін x мәнімен ауыстырыңыз, x+10y=10.
9y=10
-y санын 10y санына қосу.
y=\frac{10}{9}
Екі жағын да 9 санына бөліңіз.
x=-\frac{10}{9}
x=-y теңдеуінде \frac{10}{9} мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=-\frac{10}{9},y=\frac{10}{9}
Жүйедегі ақаулар енді шешілді.
x+y=0,x+10y=10
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}1&1\\1&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\10\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}1&1\\1&10\end{matrix}\right))\left(\begin{matrix}1&1\\1&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&10\end{matrix}\right))\left(\begin{matrix}0\\10\end{matrix}\right)
Теңдеуді \left(\begin{matrix}1&1\\1&10\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&10\end{matrix}\right))\left(\begin{matrix}0\\10\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&10\end{matrix}\right))\left(\begin{matrix}0\\10\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{10-1}&-\frac{1}{10-1}\\-\frac{1}{10-1}&\frac{1}{10-1}\end{matrix}\right)\left(\begin{matrix}0\\10\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{9}&-\frac{1}{9}\\-\frac{1}{9}&\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}0\\10\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{9}\times 10\\\frac{1}{9}\times 10\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{9}\\\frac{10}{9}\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=-\frac{10}{9},y=\frac{10}{9}
x және y матрица элементтерін шығарыңыз.
x+y=0,x+10y=10
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
x-x+y-10y=-10
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы x+10y=10 мәнін x+y=0 мәнінен алып тастаңыз.
y-10y=-10
x санын -x санына қосу. x және -x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
-9y=-10
y санын -10y санына қосу.
y=\frac{10}{9}
Екі жағын да -9 санына бөліңіз.
x+10\times \frac{10}{9}=10
x+10y=10 теңдеуінде \frac{10}{9} мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x+\frac{100}{9}=10
10 санын \frac{10}{9} санына көбейтіңіз.
x=-\frac{10}{9}
Теңдеудің екі жағынан \frac{100}{9} санын алып тастаңыз.
x=-\frac{10}{9},y=\frac{10}{9}
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}