\left\{ \begin{array} { l } { x + 5 y = 5 } \\ { 3 x - 2 y = 3 } \end{array} \right.
x, y мәнін табыңыз
x = \frac{25}{17} = 1\frac{8}{17} \approx 1.470588235
y=\frac{12}{17}\approx 0.705882353
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
x+5y=5,3x-2y=3
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
x+5y=5
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
x=-5y+5
Теңдеудің екі жағынан 5y санын алып тастаңыз.
3\left(-5y+5\right)-2y=3
Басқа теңдеуде -5y+5 мәнін x мәнімен ауыстырыңыз, 3x-2y=3.
-15y+15-2y=3
3 санын -5y+5 санына көбейтіңіз.
-17y+15=3
-15y санын -2y санына қосу.
-17y=-12
Теңдеудің екі жағынан 15 санын алып тастаңыз.
y=\frac{12}{17}
Екі жағын да -17 санына бөліңіз.
x=-5\times \frac{12}{17}+5
x=-5y+5 теңдеуінде \frac{12}{17} мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=-\frac{60}{17}+5
-5 санын \frac{12}{17} санына көбейтіңіз.
x=\frac{25}{17}
5 санын -\frac{60}{17} санына қосу.
x=\frac{25}{17},y=\frac{12}{17}
Жүйедегі ақаулар енді шешілді.
x+5y=5,3x-2y=3
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}1&5\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\3\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}1&5\\3&-2\end{matrix}\right))\left(\begin{matrix}1&5\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\3&-2\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
Теңдеуді \left(\begin{matrix}1&5\\3&-2\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\3&-2\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\3&-2\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-5\times 3}&-\frac{5}{-2-5\times 3}\\-\frac{3}{-2-5\times 3}&\frac{1}{-2-5\times 3}\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{17}&\frac{5}{17}\\\frac{3}{17}&-\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{17}\times 5+\frac{5}{17}\times 3\\\frac{3}{17}\times 5-\frac{1}{17}\times 3\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{17}\\\frac{12}{17}\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=\frac{25}{17},y=\frac{12}{17}
x және y матрица элементтерін шығарыңыз.
x+5y=5,3x-2y=3
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
3x+3\times 5y=3\times 5,3x-2y=3
x және 3x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 3 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 1 санына көбейтіңіз.
3x+15y=15,3x-2y=3
Қысқартыңыз.
3x-3x+15y+2y=15-3
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 3x-2y=3 мәнін 3x+15y=15 мәнінен алып тастаңыз.
15y+2y=15-3
3x санын -3x санына қосу. 3x және -3x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
17y=15-3
15y санын 2y санына қосу.
17y=12
15 санын -3 санына қосу.
y=\frac{12}{17}
Екі жағын да 17 санына бөліңіз.
3x-2\times \frac{12}{17}=3
3x-2y=3 теңдеуінде \frac{12}{17} мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
3x-\frac{24}{17}=3
-2 санын \frac{12}{17} санына көбейтіңіз.
3x=\frac{75}{17}
Теңдеудің екі жағына да \frac{24}{17} санын қосыңыз.
x=\frac{25}{17}
Екі жағын да 3 санына бөліңіз.
x=\frac{25}{17},y=\frac{12}{17}
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}