Негізгі мазмұнды өткізіп жіберу
x, y мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

x-y=-5
Екінші теңдеуді шешіңіз. Екі жағынан да y мәнін қысқартыңыз.
x+2y=1,x-y=-5
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
x+2y=1
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
x=-2y+1
Теңдеудің екі жағынан 2y санын алып тастаңыз.
-2y+1-y=-5
Басқа теңдеуде -2y+1 мәнін x мәнімен ауыстырыңыз, x-y=-5.
-3y+1=-5
-2y санын -y санына қосу.
-3y=-6
Теңдеудің екі жағынан 1 санын алып тастаңыз.
y=2
Екі жағын да -3 санына бөліңіз.
x=-2\times 2+1
x=-2y+1 теңдеуінде 2 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=-4+1
-2 санын 2 санына көбейтіңіз.
x=-3
1 санын -4 санына қосу.
x=-3,y=2
Жүйедегі ақаулар енді шешілді.
x-y=-5
Екінші теңдеуді шешіңіз. Екі жағынан да y мәнін қысқартыңыз.
x+2y=1,x-y=-5
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}1&2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-5\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}1&2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
Теңдеуді \left(\begin{matrix}1&2\\1&-1\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2}&-\frac{2}{-1-2}\\-\frac{1}{-1-2}&\frac{1}{-1-2}\end{matrix}\right)\left(\begin{matrix}1\\-5\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{2}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}1\\-5\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}+\frac{2}{3}\left(-5\right)\\\frac{1}{3}-\frac{1}{3}\left(-5\right)\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=-3,y=2
x және y матрица элементтерін шығарыңыз.
x-y=-5
Екінші теңдеуді шешіңіз. Екі жағынан да y мәнін қысқартыңыз.
x+2y=1,x-y=-5
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
x-x+2y+y=1+5
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы x-y=-5 мәнін x+2y=1 мәнінен алып тастаңыз.
2y+y=1+5
x санын -x санына қосу. x және -x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
3y=1+5
2y санын y санына қосу.
3y=6
1 санын 5 санына қосу.
y=2
Екі жағын да 3 санына бөліңіз.
x-2=-5
x-y=-5 теңдеуінде 2 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=-3
Теңдеудің екі жағына да 2 санын қосыңыз.
x=-3,y=2
Жүйедегі ақаулар енді шешілді.