\left\{ \begin{array} { l } { 6 x + 5 y = 1 } \\ { x - y = 2 } \end{array} \right.
x, y мәнін табыңыз
x=1
y=-1
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
6x+5y=1,x-y=2
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
6x+5y=1
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
6x=-5y+1
Теңдеудің екі жағынан 5y санын алып тастаңыз.
x=\frac{1}{6}\left(-5y+1\right)
Екі жағын да 6 санына бөліңіз.
x=-\frac{5}{6}y+\frac{1}{6}
\frac{1}{6} санын -5y+1 санына көбейтіңіз.
-\frac{5}{6}y+\frac{1}{6}-y=2
Басқа теңдеуде \frac{-5y+1}{6} мәнін x мәнімен ауыстырыңыз, x-y=2.
-\frac{11}{6}y+\frac{1}{6}=2
-\frac{5y}{6} санын -y санына қосу.
-\frac{11}{6}y=\frac{11}{6}
Теңдеудің екі жағынан \frac{1}{6} санын алып тастаңыз.
y=-1
Теңдеудің екі жағын да -\frac{11}{6} санына бөліңіз, ол екі жағын да кері бөлшекке көбейткенмен тең.
x=-\frac{5}{6}\left(-1\right)+\frac{1}{6}
x=-\frac{5}{6}y+\frac{1}{6} теңдеуінде -1 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=\frac{5+1}{6}
-\frac{5}{6} санын -1 санына көбейтіңіз.
x=1
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы \frac{1}{6} бөлшегіне \frac{5}{6} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
x=1,y=-1
Жүйедегі ақаулар енді шешілді.
6x+5y=1,x-y=2
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}6&5\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}6&5\\1&-1\end{matrix}\right))\left(\begin{matrix}6&5\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
Теңдеуді \left(\begin{matrix}6&5\\1&-1\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6\left(-1\right)-5}&-\frac{5}{6\left(-1\right)-5}\\-\frac{1}{6\left(-1\right)-5}&\frac{6}{6\left(-1\right)-5}\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&\frac{5}{11}\\\frac{1}{11}&-\frac{6}{11}\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}+\frac{5}{11}\times 2\\\frac{1}{11}-\frac{6}{11}\times 2\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=1,y=-1
x және y матрица элементтерін шығарыңыз.
6x+5y=1,x-y=2
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
6x+5y=1,6x+6\left(-1\right)y=6\times 2
6x және x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 1 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 6 санына көбейтіңіз.
6x+5y=1,6x-6y=12
Қысқартыңыз.
6x-6x+5y+6y=1-12
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 6x-6y=12 мәнін 6x+5y=1 мәнінен алып тастаңыз.
5y+6y=1-12
6x санын -6x санына қосу. 6x және -6x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
11y=1-12
5y санын 6y санына қосу.
11y=-11
1 санын -12 санына қосу.
y=-1
Екі жағын да 11 санына бөліңіз.
x-\left(-1\right)=2
x-y=2 теңдеуінде -1 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=1
Теңдеудің екі жағынан 1 санын алып тастаңыз.
x=1,y=-1
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}