\left\{ \begin{array} { l } { 5 x - 3 y = 12 } \\ { x - 2 y = 1 } \end{array} \right.
x, y мәнін табыңыз
x=3
y=1
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
5x-3y=12,x-2y=1
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
5x-3y=12
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
5x=3y+12
Теңдеудің екі жағына да 3y санын қосыңыз.
x=\frac{1}{5}\left(3y+12\right)
Екі жағын да 5 санына бөліңіз.
x=\frac{3}{5}y+\frac{12}{5}
\frac{1}{5} санын 12+3y санына көбейтіңіз.
\frac{3}{5}y+\frac{12}{5}-2y=1
Басқа теңдеуде \frac{12+3y}{5} мәнін x мәнімен ауыстырыңыз, x-2y=1.
-\frac{7}{5}y+\frac{12}{5}=1
\frac{3y}{5} санын -2y санына қосу.
-\frac{7}{5}y=-\frac{7}{5}
Теңдеудің екі жағынан \frac{12}{5} санын алып тастаңыз.
y=1
Теңдеудің екі жағын да -\frac{7}{5} санына бөліңіз, ол екі жағын да кері бөлшекке көбейткенмен тең.
x=\frac{3+12}{5}
x=\frac{3}{5}y+\frac{12}{5} теңдеуінде 1 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=3
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы \frac{12}{5} бөлшегіне \frac{3}{5} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
x=3,y=1
Жүйедегі ақаулар енді шешілді.
5x-3y=12,x-2y=1
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}5&-3\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\1\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}5&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}5&-3\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}12\\1\end{matrix}\right)
Теңдеуді \left(\begin{matrix}5&-3\\1&-2\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}12\\1\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}12\\1\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5\left(-2\right)-\left(-3\right)}&-\frac{-3}{5\left(-2\right)-\left(-3\right)}\\-\frac{1}{5\left(-2\right)-\left(-3\right)}&\frac{5}{5\left(-2\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}12\\1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&-\frac{3}{7}\\\frac{1}{7}&-\frac{5}{7}\end{matrix}\right)\left(\begin{matrix}12\\1\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 12-\frac{3}{7}\\\frac{1}{7}\times 12-\frac{5}{7}\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=3,y=1
x және y матрица элементтерін шығарыңыз.
5x-3y=12,x-2y=1
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
5x-3y=12,5x+5\left(-2\right)y=5
5x және x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 1 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 5 санына көбейтіңіз.
5x-3y=12,5x-10y=5
Қысқартыңыз.
5x-5x-3y+10y=12-5
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 5x-10y=5 мәнін 5x-3y=12 мәнінен алып тастаңыз.
-3y+10y=12-5
5x санын -5x санына қосу. 5x және -5x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
7y=12-5
-3y санын 10y санына қосу.
7y=7
12 санын -5 санына қосу.
y=1
Екі жағын да 7 санына бөліңіз.
x-2=1
x-2y=1 теңдеуінде 1 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=3
Теңдеудің екі жағына да 2 санын қосыңыз.
x=3,y=1
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}