Негізгі мазмұнды өткізіп жіберу
x, y мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

3x-y=4,x-y=1
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
3x-y=4
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
3x=y+4
Теңдеудің екі жағына да y санын қосыңыз.
x=\frac{1}{3}\left(y+4\right)
Екі жағын да 3 санына бөліңіз.
x=\frac{1}{3}y+\frac{4}{3}
\frac{1}{3} санын y+4 санына көбейтіңіз.
\frac{1}{3}y+\frac{4}{3}-y=1
Басқа теңдеуде \frac{4+y}{3} мәнін x мәнімен ауыстырыңыз, x-y=1.
-\frac{2}{3}y+\frac{4}{3}=1
\frac{y}{3} санын -y санына қосу.
-\frac{2}{3}y=-\frac{1}{3}
Теңдеудің екі жағынан \frac{4}{3} санын алып тастаңыз.
y=\frac{1}{2}
Теңдеудің екі жағын да -\frac{2}{3} санына бөліңіз, ол екі жағын да кері бөлшекке көбейткенмен тең.
x=\frac{1}{3}\times \frac{1}{2}+\frac{4}{3}
x=\frac{1}{3}y+\frac{4}{3} теңдеуінде \frac{1}{2} мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=\frac{1}{6}+\frac{4}{3}
Бөлгішін бөлгішіне және алымын алымына көбейту арқылы \frac{1}{2} санын \frac{1}{3} санына көбейтіңіз. Содан кейін бөлшекті барынша қысқартыңыз.
x=\frac{3}{2}
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы \frac{4}{3} бөлшегіне \frac{1}{6} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
x=\frac{3}{2},y=\frac{1}{2}
Жүйедегі ақаулар енді шешілді.
3x-y=4,x-y=1
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\1\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
Теңдеуді \left(\begin{matrix}3&-1\\1&-1\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-1\right)}&-\frac{-1}{3\left(-1\right)-\left(-1\right)}\\-\frac{1}{3\left(-1\right)-\left(-1\right)}&\frac{3}{3\left(-1\right)-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 4-\frac{1}{2}\\\frac{1}{2}\times 4-\frac{3}{2}\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\\frac{1}{2}\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=\frac{3}{2},y=\frac{1}{2}
x және y матрица элементтерін шығарыңыз.
3x-y=4,x-y=1
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
3x-x-y+y=4-1
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы x-y=1 мәнін 3x-y=4 мәнінен алып тастаңыз.
3x-x=4-1
-y санын y санына қосу. -y және y мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
2x=4-1
3x санын -x санына қосу.
2x=3
4 санын -1 санына қосу.
x=\frac{3}{2}
Екі жағын да 2 санына бөліңіз.
\frac{3}{2}-y=1
x-y=1 теңдеуінде \frac{3}{2} мәнін x мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, y мәнін тікелей таба аласыз.
-y=-\frac{1}{2}
Теңдеудің екі жағынан \frac{3}{2} санын алып тастаңыз.
x=\frac{3}{2},y=\frac{1}{2}
Жүйедегі ақаулар енді шешілді.