\left\{ \begin{array} { l } { 3 x - y = 11 } \\ { 5 x + 3 y = 9 } \end{array} \right.
x, y мәнін табыңыз
x=3
y=-2
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
3x-y=11,5x+3y=9
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
3x-y=11
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
3x=y+11
Теңдеудің екі жағына да y санын қосыңыз.
x=\frac{1}{3}\left(y+11\right)
Екі жағын да 3 санына бөліңіз.
x=\frac{1}{3}y+\frac{11}{3}
\frac{1}{3} санын y+11 санына көбейтіңіз.
5\left(\frac{1}{3}y+\frac{11}{3}\right)+3y=9
Басқа теңдеуде \frac{11+y}{3} мәнін x мәнімен ауыстырыңыз, 5x+3y=9.
\frac{5}{3}y+\frac{55}{3}+3y=9
5 санын \frac{11+y}{3} санына көбейтіңіз.
\frac{14}{3}y+\frac{55}{3}=9
\frac{5y}{3} санын 3y санына қосу.
\frac{14}{3}y=-\frac{28}{3}
Теңдеудің екі жағынан \frac{55}{3} санын алып тастаңыз.
y=-2
Теңдеудің екі жағын да \frac{14}{3} санына бөліңіз, ол екі жағын да кері бөлшекке көбейткенмен тең.
x=\frac{1}{3}\left(-2\right)+\frac{11}{3}
x=\frac{1}{3}y+\frac{11}{3} теңдеуінде -2 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=\frac{-2+11}{3}
\frac{1}{3} санын -2 санына көбейтіңіз.
x=3
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы \frac{11}{3} бөлшегіне -\frac{2}{3} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
x=3,y=-2
Жүйедегі ақаулар енді шешілді.
3x-y=11,5x+3y=9
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}3&-1\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\9\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}3&-1\\5&3\end{matrix}\right))\left(\begin{matrix}3&-1\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&3\end{matrix}\right))\left(\begin{matrix}11\\9\end{matrix}\right)
Теңдеуді \left(\begin{matrix}3&-1\\5&3\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&3\end{matrix}\right))\left(\begin{matrix}11\\9\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&3\end{matrix}\right))\left(\begin{matrix}11\\9\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-\left(-5\right)}&-\frac{-1}{3\times 3-\left(-5\right)}\\-\frac{5}{3\times 3-\left(-5\right)}&\frac{3}{3\times 3-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}11\\9\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{14}&\frac{1}{14}\\-\frac{5}{14}&\frac{3}{14}\end{matrix}\right)\left(\begin{matrix}11\\9\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{14}\times 11+\frac{1}{14}\times 9\\-\frac{5}{14}\times 11+\frac{3}{14}\times 9\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=3,y=-2
x және y матрица элементтерін шығарыңыз.
3x-y=11,5x+3y=9
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
5\times 3x+5\left(-1\right)y=5\times 11,3\times 5x+3\times 3y=3\times 9
3x және 5x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 5 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 3 санына көбейтіңіз.
15x-5y=55,15x+9y=27
Қысқартыңыз.
15x-15x-5y-9y=55-27
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 15x+9y=27 мәнін 15x-5y=55 мәнінен алып тастаңыз.
-5y-9y=55-27
15x санын -15x санына қосу. 15x және -15x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
-14y=55-27
-5y санын -9y санына қосу.
-14y=28
55 санын -27 санына қосу.
y=-2
Екі жағын да -14 санына бөліңіз.
5x+3\left(-2\right)=9
5x+3y=9 теңдеуінде -2 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
5x-6=9
3 санын -2 санына көбейтіңіз.
5x=15
Теңдеудің екі жағына да 6 санын қосыңыз.
x=3
Екі жағын да 5 санына бөліңіз.
x=3,y=-2
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}