Негізгі мазмұнды өткізіп жіберу
x, y мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

3x-y=-1,-x+2y=7
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
3x-y=-1
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
3x=y-1
Теңдеудің екі жағына да y санын қосыңыз.
x=\frac{1}{3}\left(y-1\right)
Екі жағын да 3 санына бөліңіз.
x=\frac{1}{3}y-\frac{1}{3}
\frac{1}{3} санын y-1 санына көбейтіңіз.
-\left(\frac{1}{3}y-\frac{1}{3}\right)+2y=7
Басқа теңдеуде \frac{-1+y}{3} мәнін x мәнімен ауыстырыңыз, -x+2y=7.
-\frac{1}{3}y+\frac{1}{3}+2y=7
-1 санын \frac{-1+y}{3} санына көбейтіңіз.
\frac{5}{3}y+\frac{1}{3}=7
-\frac{y}{3} санын 2y санына қосу.
\frac{5}{3}y=\frac{20}{3}
Теңдеудің екі жағынан \frac{1}{3} санын алып тастаңыз.
y=4
Теңдеудің екі жағын да \frac{5}{3} санына бөліңіз, ол екі жағын да кері бөлшекке көбейткенмен тең.
x=\frac{1}{3}\times 4-\frac{1}{3}
x=\frac{1}{3}y-\frac{1}{3} теңдеуінде 4 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=\frac{4-1}{3}
\frac{1}{3} санын 4 санына көбейтіңіз.
x=1
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы -\frac{1}{3} бөлшегіне \frac{4}{3} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
x=1,y=4
Жүйедегі ақаулар енді шешілді.
3x-y=-1,-x+2y=7
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\7\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}-1\\7\end{matrix}\right)
Теңдеуді \left(\begin{matrix}3&-1\\-1&2\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}-1\\7\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}-1\\7\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-\left(-1\right)\right)}&-\frac{-1}{3\times 2-\left(-\left(-1\right)\right)}\\-\frac{-1}{3\times 2-\left(-\left(-1\right)\right)}&\frac{3}{3\times 2-\left(-\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}-1\\7\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&\frac{1}{5}\\\frac{1}{5}&\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}-1\\7\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\left(-1\right)+\frac{1}{5}\times 7\\\frac{1}{5}\left(-1\right)+\frac{3}{5}\times 7\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=1,y=4
x және y матрица элементтерін шығарыңыз.
3x-y=-1,-x+2y=7
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
-3x-\left(-y\right)=-\left(-1\right),3\left(-1\right)x+3\times 2y=3\times 7
3x және -x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді -1 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 3 санына көбейтіңіз.
-3x+y=1,-3x+6y=21
Қысқартыңыз.
-3x+3x+y-6y=1-21
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы -3x+6y=21 мәнін -3x+y=1 мәнінен алып тастаңыз.
y-6y=1-21
-3x санын 3x санына қосу. -3x және 3x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
-5y=1-21
y санын -6y санына қосу.
-5y=-20
1 санын -21 санына қосу.
y=4
Екі жағын да -5 санына бөліңіз.
-x+2\times 4=7
-x+2y=7 теңдеуінде 4 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
-x+8=7
2 санын 4 санына көбейтіңіз.
-x=-1
Теңдеудің екі жағынан 8 санын алып тастаңыз.
x=1
Екі жағын да -1 санына бөліңіз.
x=1,y=4
Жүйедегі ақаулар енді шешілді.