Негізгі мазмұнды өткізіп жіберу
x, y мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

3x-2y=13,x+2y=-1
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
3x-2y=13
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
3x=2y+13
Теңдеудің екі жағына да 2y санын қосыңыз.
x=\frac{1}{3}\left(2y+13\right)
Екі жағын да 3 санына бөліңіз.
x=\frac{2}{3}y+\frac{13}{3}
\frac{1}{3} санын 2y+13 санына көбейтіңіз.
\frac{2}{3}y+\frac{13}{3}+2y=-1
Басқа теңдеуде \frac{2y+13}{3} мәнін x мәнімен ауыстырыңыз, x+2y=-1.
\frac{8}{3}y+\frac{13}{3}=-1
\frac{2y}{3} санын 2y санына қосу.
\frac{8}{3}y=-\frac{16}{3}
Теңдеудің екі жағынан \frac{13}{3} санын алып тастаңыз.
y=-2
Теңдеудің екі жағын да \frac{8}{3} санына бөліңіз, ол екі жағын да кері бөлшекке көбейткенмен тең.
x=\frac{2}{3}\left(-2\right)+\frac{13}{3}
x=\frac{2}{3}y+\frac{13}{3} теңдеуінде -2 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=\frac{-4+13}{3}
\frac{2}{3} санын -2 санына көбейтіңіз.
x=3
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы \frac{13}{3} бөлшегіне -\frac{4}{3} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
x=3,y=-2
Жүйедегі ақаулар енді шешілді.
3x-2y=13,x+2y=-1
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}3&-2\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\-1\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}3&-2\\1&2\end{matrix}\right))\left(\begin{matrix}3&-2\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&2\end{matrix}\right))\left(\begin{matrix}13\\-1\end{matrix}\right)
Теңдеуді \left(\begin{matrix}3&-2\\1&2\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&2\end{matrix}\right))\left(\begin{matrix}13\\-1\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&2\end{matrix}\right))\left(\begin{matrix}13\\-1\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-2\right)}&-\frac{-2}{3\times 2-\left(-2\right)}\\-\frac{1}{3\times 2-\left(-2\right)}&\frac{3}{3\times 2-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}13\\-1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{1}{8}&\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}13\\-1\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 13+\frac{1}{4}\left(-1\right)\\-\frac{1}{8}\times 13+\frac{3}{8}\left(-1\right)\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=3,y=-2
x және y матрица элементтерін шығарыңыз.
3x-2y=13,x+2y=-1
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
3x-2y=13,3x+3\times 2y=3\left(-1\right)
3x және x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 1 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 3 санына көбейтіңіз.
3x-2y=13,3x+6y=-3
Қысқартыңыз.
3x-3x-2y-6y=13+3
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 3x+6y=-3 мәнін 3x-2y=13 мәнінен алып тастаңыз.
-2y-6y=13+3
3x санын -3x санына қосу. 3x және -3x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
-8y=13+3
-2y санын -6y санына қосу.
-8y=16
13 санын 3 санына қосу.
y=-2
Екі жағын да -8 санына бөліңіз.
x+2\left(-2\right)=-1
x+2y=-1 теңдеуінде -2 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x-4=-1
2 санын -2 санына көбейтіңіз.
x=3
Теңдеудің екі жағына да 4 санын қосыңыз.
x=3,y=-2
Жүйедегі ақаулар енді шешілді.