Негізгі мазмұнды өткізіп жіберу
x, y мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

3x+2y=10,7x-8y=-2
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
3x+2y=10
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
3x=-2y+10
Теңдеудің екі жағынан 2y санын алып тастаңыз.
x=\frac{1}{3}\left(-2y+10\right)
Екі жағын да 3 санына бөліңіз.
x=-\frac{2}{3}y+\frac{10}{3}
\frac{1}{3} санын -2y+10 санына көбейтіңіз.
7\left(-\frac{2}{3}y+\frac{10}{3}\right)-8y=-2
Басқа теңдеуде \frac{-2y+10}{3} мәнін x мәнімен ауыстырыңыз, 7x-8y=-2.
-\frac{14}{3}y+\frac{70}{3}-8y=-2
7 санын \frac{-2y+10}{3} санына көбейтіңіз.
-\frac{38}{3}y+\frac{70}{3}=-2
-\frac{14y}{3} санын -8y санына қосу.
-\frac{38}{3}y=-\frac{76}{3}
Теңдеудің екі жағынан \frac{70}{3} санын алып тастаңыз.
y=2
Теңдеудің екі жағын да -\frac{38}{3} санына бөліңіз, ол екі жағын да кері бөлшекке көбейткенмен тең.
x=-\frac{2}{3}\times 2+\frac{10}{3}
x=-\frac{2}{3}y+\frac{10}{3} теңдеуінде 2 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=\frac{-4+10}{3}
-\frac{2}{3} санын 2 санына көбейтіңіз.
x=2
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы \frac{10}{3} бөлшегіне -\frac{4}{3} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
x=2,y=2
Жүйедегі ақаулар енді шешілді.
3x+2y=10,7x-8y=-2
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}3&2\\7&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-2\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}3&2\\7&-8\end{matrix}\right))\left(\begin{matrix}3&2\\7&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\7&-8\end{matrix}\right))\left(\begin{matrix}10\\-2\end{matrix}\right)
Теңдеуді \left(\begin{matrix}3&2\\7&-8\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\7&-8\end{matrix}\right))\left(\begin{matrix}10\\-2\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\7&-8\end{matrix}\right))\left(\begin{matrix}10\\-2\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{3\left(-8\right)-2\times 7}&-\frac{2}{3\left(-8\right)-2\times 7}\\-\frac{7}{3\left(-8\right)-2\times 7}&\frac{3}{3\left(-8\right)-2\times 7}\end{matrix}\right)\left(\begin{matrix}10\\-2\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{19}&\frac{1}{19}\\\frac{7}{38}&-\frac{3}{38}\end{matrix}\right)\left(\begin{matrix}10\\-2\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{19}\times 10+\frac{1}{19}\left(-2\right)\\\frac{7}{38}\times 10-\frac{3}{38}\left(-2\right)\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\2\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=2,y=2
x және y матрица элементтерін шығарыңыз.
3x+2y=10,7x-8y=-2
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
7\times 3x+7\times 2y=7\times 10,3\times 7x+3\left(-8\right)y=3\left(-2\right)
3x және 7x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 7 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 3 санына көбейтіңіз.
21x+14y=70,21x-24y=-6
Қысқартыңыз.
21x-21x+14y+24y=70+6
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 21x-24y=-6 мәнін 21x+14y=70 мәнінен алып тастаңыз.
14y+24y=70+6
21x санын -21x санына қосу. 21x және -21x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
38y=70+6
14y санын 24y санына қосу.
38y=76
70 санын 6 санына қосу.
y=2
Екі жағын да 38 санына бөліңіз.
7x-8\times 2=-2
7x-8y=-2 теңдеуінде 2 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
7x-16=-2
-8 санын 2 санына көбейтіңіз.
7x=14
Теңдеудің екі жағына да 16 санын қосыңыз.
x=2
Екі жағын да 7 санына бөліңіз.
x=2,y=2
Жүйедегі ақаулар енді шешілді.