\left\{ \begin{array} { l } { 2 x - y = 3 } \\ { x - y = - 1 } \end{array} \right.
x, y мәнін табыңыз
x=4
y=5
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
2x-y=3,x-y=-1
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
2x-y=3
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
2x=y+3
Теңдеудің екі жағына да y санын қосыңыз.
x=\frac{1}{2}\left(y+3\right)
Екі жағын да 2 санына бөліңіз.
x=\frac{1}{2}y+\frac{3}{2}
\frac{1}{2} санын y+3 санына көбейтіңіз.
\frac{1}{2}y+\frac{3}{2}-y=-1
Басқа теңдеуде \frac{3+y}{2} мәнін x мәнімен ауыстырыңыз, x-y=-1.
-\frac{1}{2}y+\frac{3}{2}=-1
\frac{y}{2} санын -y санына қосу.
-\frac{1}{2}y=-\frac{5}{2}
Теңдеудің екі жағынан \frac{3}{2} санын алып тастаңыз.
y=5
Екі жағын да -2 мәніне көбейтіңіз.
x=\frac{1}{2}\times 5+\frac{3}{2}
x=\frac{1}{2}y+\frac{3}{2} теңдеуінде 5 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=\frac{5+3}{2}
\frac{1}{2} санын 5 санына көбейтіңіз.
x=4
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы \frac{3}{2} бөлшегіне \frac{5}{2} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
x=4,y=5
Жүйедегі ақаулар енді шешілді.
2x-y=3,x-y=-1
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Теңдеуді \left(\begin{matrix}2&-1\\1&-1\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-\left(-1\right)}&-\frac{-1}{2\left(-1\right)-\left(-1\right)}\\-\frac{1}{2\left(-1\right)-\left(-1\right)}&\frac{2}{2\left(-1\right)-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3-\left(-1\right)\\3-2\left(-1\right)\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\5\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=4,y=5
x және y матрица элементтерін шығарыңыз.
2x-y=3,x-y=-1
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
2x-x-y+y=3+1
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы x-y=-1 мәнін 2x-y=3 мәнінен алып тастаңыз.
2x-x=3+1
-y санын y санына қосу. -y және y мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
x=3+1
2x санын -x санына қосу.
x=4
3 санын 1 санына қосу.
4-y=-1
x-y=-1 теңдеуінде 4 мәнін x мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, y мәнін тікелей таба аласыз.
-y=-5
Теңдеудің екі жағынан 4 санын алып тастаңыз.
x=4,y=5
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}