Негізгі мазмұнды өткізіп жіберу
x, y мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

2x+3y=4,3x+2y=7
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
2x+3y=4
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
2x=-3y+4
Теңдеудің екі жағынан 3y санын алып тастаңыз.
x=\frac{1}{2}\left(-3y+4\right)
Екі жағын да 2 санына бөліңіз.
x=-\frac{3}{2}y+2
\frac{1}{2} санын -3y+4 санына көбейтіңіз.
3\left(-\frac{3}{2}y+2\right)+2y=7
Басқа теңдеуде -\frac{3y}{2}+2 мәнін x мәнімен ауыстырыңыз, 3x+2y=7.
-\frac{9}{2}y+6+2y=7
3 санын -\frac{3y}{2}+2 санына көбейтіңіз.
-\frac{5}{2}y+6=7
-\frac{9y}{2} санын 2y санына қосу.
-\frac{5}{2}y=1
Теңдеудің екі жағынан 6 санын алып тастаңыз.
y=-\frac{2}{5}
Теңдеудің екі жағын да -\frac{5}{2} санына бөліңіз, ол екі жағын да кері бөлшекке көбейткенмен тең.
x=-\frac{3}{2}\left(-\frac{2}{5}\right)+2
x=-\frac{3}{2}y+2 теңдеуінде -\frac{2}{5} мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=\frac{3}{5}+2
Бөлгішін бөлгішіне және алымын алымына көбейту арқылы -\frac{2}{5} санын -\frac{3}{2} санына көбейтіңіз. Содан кейін бөлшекті барынша қысқартыңыз.
x=\frac{13}{5}
2 санын \frac{3}{5} санына қосу.
x=\frac{13}{5},y=-\frac{2}{5}
Жүйедегі ақаулар енді шешілді.
2x+3y=4,3x+2y=7
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}2&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\7\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}2&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
Теңдеуді \left(\begin{matrix}2&3\\3&2\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-3\times 3}&-\frac{3}{2\times 2-3\times 3}\\-\frac{3}{2\times 2-3\times 3}&\frac{2}{2\times 2-3\times 3}\end{matrix}\right)\left(\begin{matrix}4\\7\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}&\frac{3}{5}\\\frac{3}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}4\\7\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\times 4+\frac{3}{5}\times 7\\\frac{3}{5}\times 4-\frac{2}{5}\times 7\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{5}\\-\frac{2}{5}\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=\frac{13}{5},y=-\frac{2}{5}
x және y матрица элементтерін шығарыңыз.
2x+3y=4,3x+2y=7
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
3\times 2x+3\times 3y=3\times 4,2\times 3x+2\times 2y=2\times 7
2x және 3x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 3 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 2 санына көбейтіңіз.
6x+9y=12,6x+4y=14
Қысқартыңыз.
6x-6x+9y-4y=12-14
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 6x+4y=14 мәнін 6x+9y=12 мәнінен алып тастаңыз.
9y-4y=12-14
6x санын -6x санына қосу. 6x және -6x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
5y=12-14
9y санын -4y санына қосу.
5y=-2
12 санын -14 санына қосу.
y=-\frac{2}{5}
Екі жағын да 5 санына бөліңіз.
3x+2\left(-\frac{2}{5}\right)=7
3x+2y=7 теңдеуінде -\frac{2}{5} мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
3x-\frac{4}{5}=7
2 санын -\frac{2}{5} санына көбейтіңіз.
3x=\frac{39}{5}
Теңдеудің екі жағына да \frac{4}{5} санын қосыңыз.
x=\frac{13}{5}
Екі жағын да 3 санына бөліңіз.
x=\frac{13}{5},y=-\frac{2}{5}
Жүйедегі ақаулар енді шешілді.