\left\{ \begin{array} { l } { - x + 3 y = 6 } \\ { x - 7 y = 14 } \end{array} \right.
x, y мәнін табыңыз
x=-21
y=-5
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
-x+3y=6,x-7y=14
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
-x+3y=6
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
-x=-3y+6
Теңдеудің екі жағынан 3y санын алып тастаңыз.
x=-\left(-3y+6\right)
Екі жағын да -1 санына бөліңіз.
x=3y-6
-1 санын -3y+6 санына көбейтіңіз.
3y-6-7y=14
Басқа теңдеуде -6+3y мәнін x мәнімен ауыстырыңыз, x-7y=14.
-4y-6=14
3y санын -7y санына қосу.
-4y=20
Теңдеудің екі жағына да 6 санын қосыңыз.
y=-5
Екі жағын да -4 санына бөліңіз.
x=3\left(-5\right)-6
x=3y-6 теңдеуінде -5 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=-15-6
3 санын -5 санына көбейтіңіз.
x=-21
-6 санын -15 санына қосу.
x=-21,y=-5
Жүйедегі ақаулар енді шешілді.
-x+3y=6,x-7y=14
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}-1&3\\1&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\14\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}-1&3\\1&-7\end{matrix}\right))\left(\begin{matrix}-1&3\\1&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&3\\1&-7\end{matrix}\right))\left(\begin{matrix}6\\14\end{matrix}\right)
Теңдеуді \left(\begin{matrix}-1&3\\1&-7\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&3\\1&-7\end{matrix}\right))\left(\begin{matrix}6\\14\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&3\\1&-7\end{matrix}\right))\left(\begin{matrix}6\\14\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-\left(-7\right)-3}&-\frac{3}{-\left(-7\right)-3}\\-\frac{1}{-\left(-7\right)-3}&-\frac{1}{-\left(-7\right)-3}\end{matrix}\right)\left(\begin{matrix}6\\14\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{4}&-\frac{3}{4}\\-\frac{1}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}6\\14\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{4}\times 6-\frac{3}{4}\times 14\\-\frac{1}{4}\times 6-\frac{1}{4}\times 14\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-21\\-5\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=-21,y=-5
x және y матрица элементтерін шығарыңыз.
-x+3y=6,x-7y=14
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
-x+3y=6,-x-\left(-7y\right)=-14
-x және x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 1 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді -1 санына көбейтіңіз.
-x+3y=6,-x+7y=-14
Қысқартыңыз.
-x+x+3y-7y=6+14
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы -x+7y=-14 мәнін -x+3y=6 мәнінен алып тастаңыз.
3y-7y=6+14
-x санын x санына қосу. -x және x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
-4y=6+14
3y санын -7y санына қосу.
-4y=20
6 санын 14 санына қосу.
y=-5
Екі жағын да -4 санына бөліңіз.
x-7\left(-5\right)=14
x-7y=14 теңдеуінде -5 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x+35=14
-7 санын -5 санына көбейтіңіз.
x=-21
Теңдеудің екі жағынан 35 санын алып тастаңыз.
x=-21,y=-5
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}