Негізгі мазмұнды өткізіп жіберу
Есептеу
Tick mark Image

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

\int _{122}^{328}\left(2-\left(x^{2}-4x+4\right)\right)^{2}-\left(2-0\times 5\right)^{2}\mathrm{d}x
\left(x-2\right)^{2} формуласын жіктеу үшін \left(a-b\right)^{2}=a^{2}-2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
\int _{122}^{328}\left(2-x^{2}+4x-4\right)^{2}-\left(2-0\times 5\right)^{2}\mathrm{d}x
x^{2}-4x+4 теңдеуінің қарсы мәнін табу үшін, әр мүшенің қарсы мәнін табыңыз.
\int _{122}^{328}\left(-2-x^{2}+4x\right)^{2}-\left(2-0\times 5\right)^{2}\mathrm{d}x
-2 мәнін алу үшін, 2 мәнінен 4 мәнін алып тастаңыз.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-\left(2-0\times 5\right)^{2}\mathrm{d}x
-2-x^{2}+4x санының квадратын шығарыңыз.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-\left(2-0\right)^{2}\mathrm{d}x
0 шығару үшін, 0 және 5 сандарын көбейтіңіз.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-2^{2}\mathrm{d}x
2 мәнін алу үшін, 2 мәнінен 0 мәнін алып тастаңыз.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-4\mathrm{d}x
2 дәреже көрсеткішінің 2 мәнін есептеп, 4 мәнін алыңыз.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x\mathrm{d}x
0 мәнін алу үшін, 4 мәнінен 4 мәнін алып тастаңыз.
\int x^{4}-8x^{3}+20x^{2}-16x\mathrm{d}x
Алдымен белгісіз интегралды бағалаңыз.
\int x^{4}\mathrm{d}x+\int -8x^{3}\mathrm{d}x+\int 20x^{2}\mathrm{d}x+\int -16x\mathrm{d}x
Қосындыны мүше бойынша интегралдау.
\int x^{4}\mathrm{d}x-8\int x^{3}\mathrm{d}x+20\int x^{2}\mathrm{d}x-16\int x\mathrm{d}x
Әрбір шарттағы тұрақты мәнді фактор.
\frac{x^{5}}{5}-8\int x^{3}\mathrm{d}x+20\int x^{2}\mathrm{d}x-16\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} үшін k\neq -1 болғандықтан, \int x^{4}\mathrm{d}x және\frac{x^{5}}{5} орындарын ауыстырыңыз.
\frac{x^{5}}{5}-2x^{4}+20\int x^{2}\mathrm{d}x-16\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} үшін k\neq -1 болғандықтан, \int x^{3}\mathrm{d}x және\frac{x^{4}}{4} орындарын ауыстырыңыз. -8 санын \frac{x^{4}}{4} санына көбейтіңіз.
\frac{x^{5}}{5}-2x^{4}+\frac{20x^{3}}{3}-16\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} үшін k\neq -1 болғандықтан, \int x^{2}\mathrm{d}x және\frac{x^{3}}{3} орындарын ауыстырыңыз. 20 санын \frac{x^{3}}{3} санына көбейтіңіз.
\frac{x^{5}}{5}-2x^{4}+\frac{20x^{3}}{3}-8x^{2}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} үшін k\neq -1 болғандықтан, \int x\mathrm{d}x және\frac{x^{2}}{2} орындарын ауыстырыңыз. -16 санын \frac{x^{2}}{2} санына көбейтіңіз.
\frac{328^{5}}{5}-2\times 328^{4}+\frac{20}{3}\times 328^{3}-8\times 328^{2}-\left(\frac{122^{5}}{5}-2\times 122^{4}+\frac{20}{3}\times 122^{3}-8\times 122^{2}\right)
Анықталған интеграл интеграцияның төменгі шегінде бағаланатын кері туындыны алып тастағанда интегралдың жоғарғы шегінде бағаланатын өрнектің кері туынды түрі болып табылады.
\frac{10970799276608}{15}
Қысқартыңыз.