Есептеу
0.76
Ортақ пайдалану
Алмасу буферіне көшірілген
\int _{0}^{2}\left(0.36x-0.05x^{2}\right)x\mathrm{d}x
-3.6x+0.5x^{2} мәнін -0.1 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
\int _{0}^{2}0.36x^{2}-0.05x^{3}\mathrm{d}x
0.36x-0.05x^{2} мәнін x мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
\int \frac{9x^{2}}{25}-\frac{x^{3}}{20}\mathrm{d}x
Алдымен белгісіз интегралды бағалаңыз.
\int \frac{9x^{2}}{25}\mathrm{d}x+\int -\frac{x^{3}}{20}\mathrm{d}x
Қосындыны мүше бойынша интегралдау.
\frac{9\int x^{2}\mathrm{d}x}{25}-\frac{\int x^{3}\mathrm{d}x}{20}
Әрбір шарттағы тұрақты мәнді фактор.
\frac{3x^{3}}{25}-\frac{\int x^{3}\mathrm{d}x}{20}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} үшін k\neq -1 болғандықтан, \int x^{2}\mathrm{d}x және\frac{x^{3}}{3} орындарын ауыстырыңыз. 0.36 санын \frac{x^{3}}{3} санына көбейтіңіз.
\frac{3x^{3}}{25}-\frac{x^{4}}{80}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} үшін k\neq -1 болғандықтан, \int x^{3}\mathrm{d}x және\frac{x^{4}}{4} орындарын ауыстырыңыз. -0.05 санын \frac{x^{4}}{4} санына көбейтіңіз.
\frac{3}{25}\times 2^{3}-\frac{2^{4}}{80}-\left(\frac{3}{25}\times 0^{3}-\frac{0^{4}}{80}\right)
Анықталған интеграл интеграцияның төменгі шегінде бағаланатын кері туындыны алып тастағанда интегралдың жоғарғы шегінде бағаланатын өрнектің кері туынды түрі болып табылады.
\frac{19}{25}
Қысқартыңыз.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}