Негізгі мазмұнды өткізіп жіберу
Есептеу
Tick mark Image
x қатысты айыру
Tick mark Image

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

\sqrt{2}\int \sqrt{\frac{1}{x}}\mathrm{d}x
\int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x қолданып тұрақты мәнді жойыңыз.
\sqrt{2}\times 2\sqrt{x}
\frac{1}{\sqrt{x}} мәнін x^{-\frac{1}{2}} ретінде қайта жазыңыз. \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} үшін k\neq -1 болғандықтан, \int x^{-\frac{1}{2}}\mathrm{d}x және\frac{x^{\frac{1}{2}}}{\frac{1}{2}} орындарын ауыстырыңыз. Жеңілдету және экспоненциалды түрден радикалды түрге айналдыру
2\sqrt{2}\sqrt{x}
Қысқартыңыз.
2\sqrt{2}\sqrt{x}+С
Егер F\left(x\right) f\left(x\right)-нің кері туындысы болса, онда f\left(x\right) кері туындылар жиынтығы F\left(x\right)+C арқылы көрсетілген. Сондықтан нәтижеге интеграл C\in \mathrm{R} тұрақтысын қосыңыз.