Есептеу
\frac{1}{\ln(2)}+\frac{1}{3}\approx 1.776028374
Ортақ пайдалану
Алмасу буферіне көшірілген
\int 2^{x}+x^{2}\mathrm{d}x
Алдымен белгісіз интегралды бағалаңыз.
\int 2^{x}\mathrm{d}x+\int x^{2}\mathrm{d}x
Қосындыны мүше бойынша интегралдау.
\frac{2^{x}}{\ln(2)}+\int x^{2}\mathrm{d}x
Нәтижені алу үшін жалпы интегралдар кестесінен \int x^{k}\mathrm{d}k=\frac{x^{k}}{\ln(x)} қолданыңыз.
\frac{2^{x}}{\ln(2)}+\frac{x^{3}}{3}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} үшін k\neq -1 болғандықтан, \int x^{2}\mathrm{d}x және\frac{x^{3}}{3} орындарын ауыстырыңыз.
2^{1}\ln(2)^{-1}+\frac{1^{3}}{3}-\left(2^{0}\ln(2)^{-1}+\frac{0^{3}}{3}\right)
Анықталған интеграл интеграцияның төменгі шегінде бағаланатын кері туындыны алып тастағанда интегралдың жоғарғы шегінде бағаланатын өрнектің кері туынды түрі болып табылады.
\frac{1}{3}+\frac{1}{\ln(2)}
Қысқартыңыз.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}