Негізгі мазмұнды өткізіп жіберу
Есептеу
Tick mark Image
t қатысты айыру
Tick mark Image

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

\sqrt{6}\int t\mathrm{d}t
\int af\left(t\right)\mathrm{d}t=a\int f\left(t\right)\mathrm{d}t қолданып тұрақты мәнді жойыңыз.
\sqrt{6}\times \frac{t^{2}}{2}
\int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} үшін k\neq -1 болғандықтан, \int t\mathrm{d}t және\frac{t^{2}}{2} орындарын ауыстырыңыз.
\frac{\sqrt{6}t^{2}}{2}
Қысқартыңыз.
\frac{\sqrt{6}t^{2}}{2}+С
Егер F\left(t\right) f\left(t\right)-нің кері туындысы болса, онда f\left(t\right) кері туындылар жиынтығы F\left(t\right)+C арқылы көрсетілген. Сондықтан нәтижеге интеграл C\in \mathrm{R} тұрақтысын қосыңыз.