Негізгі мазмұнды өткізіп жіберу
x мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

\frac{x\sqrt{2}}{\left(\sqrt{2}\right)^{2}}=\sqrt{32}
Алым мен бөлімді \sqrt{2} санына көбейту арқылы \frac{x}{\sqrt{2}} бөлімінің иррационалдығынан құтылыңыз.
\frac{x\sqrt{2}}{2}=\sqrt{32}
\sqrt{2} квадраты 2 болып табылады.
\frac{x\sqrt{2}}{2}=4\sqrt{2}
32=4^{2}\times 2 мәнін көбейткіштерге жіктеңіз. \sqrt{4^{2}\times 2} көбейтіндісінің квадрат түбірін \sqrt{4^{2}}\sqrt{2} квадрат түбірлерінің көбейтіндісі ретінде қайта жазыңыз. 4^{2} санының квадраттық түбірін шығарыңыз.
x\sqrt{2}=8\sqrt{2}
Теңдеудің екі жағын да 2 мәніне көбейтіңіз.
\sqrt{2}x=8\sqrt{2}
Теңдеу стандартты формулаға келтірілді.
\frac{\sqrt{2}x}{\sqrt{2}}=\frac{8\sqrt{2}}{\sqrt{2}}
Екі жағын да \sqrt{2} санына бөліңіз.
x=\frac{8\sqrt{2}}{\sqrt{2}}
\sqrt{2} санына бөлген кезде \sqrt{2} санына көбейту әрекетінің күшін жояды.
x=8
8\sqrt{2} санын \sqrt{2} санына бөліңіз.