\frac { d x ^ { 2 } } { d t ^ { 2 } } + \frac { 12 d x } { d t } + 13 x = 2 \frac { d x } { d t }
d мәнін табыңыз
d\neq 0
t=-\frac{12}{13}\text{ or }\left(x=0\text{ and }t\neq 0\right)
t мәнін табыңыз
\left\{\begin{matrix}t=-\frac{12}{13}\text{, }&x\neq 0\text{ and }d\neq 0\\t\neq 0\text{, }&x=0\text{ and }d\neq 0\end{matrix}\right.
Ортақ пайдалану
Алмасу буферіне көшірілген
dt\frac{\mathrm{d}(x^{2})}{\mathrm{d}t^{2}}+12dx+13xdt=2\frac{\mathrm{d}(x)}{\mathrm{d}t}dt
d айнымалы мәні 0 мәніне тең бола алмайды, себебі нөлге бөлу анықталмаған. Теңдеудің екі жағын да dt мәніне көбейтіңіз.
dt\frac{\mathrm{d}(x^{2})}{\mathrm{d}t^{2}}+12dx+13xdt-2\frac{\mathrm{d}(x)}{\mathrm{d}t}dt=0
Екі жағынан да 2\frac{\mathrm{d}(x)}{\mathrm{d}t}dt мәнін қысқартыңыз.
\left(t\frac{\mathrm{d}(x^{2})}{\mathrm{d}t^{2}}+12x+13xt-2\frac{\mathrm{d}(x)}{\mathrm{d}t}t\right)d=0
d қамтылған барлық бос мүшелерді біріктіріңіз.
\left(13tx+12x\right)d=0
Теңдеу стандартты формулаға келтірілді.
d=0
0 санын 12x+13xt санына бөліңіз.
d\in \emptyset
d айнымалы мәні 0 мәніне тең болуы мүмкін емес.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}