Негізгі мазмұнды өткізіп жіберу
d мәнін табыңыз
Tick mark Image
t мәнін табыңыз
Tick mark Image

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

dt\frac{\mathrm{d}(x^{2})}{\mathrm{d}t^{2}}+12dx+13xdt=2\frac{\mathrm{d}(x)}{\mathrm{d}t}dt
d айнымалы мәні 0 мәніне тең бола алмайды, себебі нөлге бөлу анықталмаған. Теңдеудің екі жағын да dt мәніне көбейтіңіз.
dt\frac{\mathrm{d}(x^{2})}{\mathrm{d}t^{2}}+12dx+13xdt-2\frac{\mathrm{d}(x)}{\mathrm{d}t}dt=0
Екі жағынан да 2\frac{\mathrm{d}(x)}{\mathrm{d}t}dt мәнін қысқартыңыз.
\left(t\frac{\mathrm{d}(x^{2})}{\mathrm{d}t^{2}}+12x+13xt-2\frac{\mathrm{d}(x)}{\mathrm{d}t}t\right)d=0
d қамтылған барлық бос мүшелерді біріктіріңіз.
\left(13tx+12x\right)d=0
Теңдеу стандартты формулаға келтірілді.
d=0
0 санын 12x+13xt санына бөліңіз.
d\in \emptyset
d айнымалы мәні 0 мәніне тең болуы мүмкін емес.