Негізгі мазмұнды өткізіп жіберу
Есептеу
Tick mark Image
Нақты бөлік
Tick mark Image

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

\frac{\left(5+5i\right)\left(-6+3i\right)}{\left(-6-3i\right)\left(-6+3i\right)}
Бөлшектің алымы мен бөлімін бөлгіштің -6+3i кешенді іргелес санына көбейтіңіз.
\frac{\left(5+5i\right)\left(-6+3i\right)}{\left(-6\right)^{2}-3^{2}i^{2}}
Көбейтуді мына ереженің көмегімен квадраттар айырмасына айналдыруға болады: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+5i\right)\left(-6+3i\right)}{45}
Анықтама бойынша i^{2} — -1. Бөлімді есептеңіз.
\frac{5\left(-6\right)+5\times \left(3i\right)+5i\left(-6\right)+5\times 3i^{2}}{45}
5+5i және -6+3i күрделі сандарын қосмүшелерді көбейткендей көбейтіңіз.
\frac{5\left(-6\right)+5\times \left(3i\right)+5i\left(-6\right)+5\times 3\left(-1\right)}{45}
Анықтама бойынша i^{2} — -1.
\frac{-30+15i-30i-15}{45}
5\left(-6\right)+5\times \left(3i\right)+5i\left(-6\right)+5\times 3\left(-1\right) өрнегінде көбейту операциясын орындаңыз.
\frac{-30-15+\left(15-30\right)i}{45}
Мына сандардағы нақты және жорамал бөліктерді біріктіріңіз: -30+15i-30i-15.
\frac{-45-15i}{45}
-30-15+\left(15-30\right)i өрнегінде қосу операциясын орындаңыз.
-1-\frac{1}{3}i
-1-\frac{1}{3}i нәтижесін алу үшін, -45-15i мәнін 45 мәніне бөліңіз.
Re(\frac{\left(5+5i\right)\left(-6+3i\right)}{\left(-6-3i\right)\left(-6+3i\right)})
\frac{5+5i}{-6-3i} бөлшегінің алымы мен бөлімін бөлгіштің кешенді іргелес санына (-6+3i) көбейтіңіз.
Re(\frac{\left(5+5i\right)\left(-6+3i\right)}{\left(-6\right)^{2}-3^{2}i^{2}})
Көбейтуді мына ереженің көмегімен квадраттар айырмасына айналдыруға болады: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5+5i\right)\left(-6+3i\right)}{45})
Анықтама бойынша i^{2} — -1. Бөлімді есептеңіз.
Re(\frac{5\left(-6\right)+5\times \left(3i\right)+5i\left(-6\right)+5\times 3i^{2}}{45})
5+5i және -6+3i күрделі сандарын қосмүшелерді көбейткендей көбейтіңіз.
Re(\frac{5\left(-6\right)+5\times \left(3i\right)+5i\left(-6\right)+5\times 3\left(-1\right)}{45})
Анықтама бойынша i^{2} — -1.
Re(\frac{-30+15i-30i-15}{45})
5\left(-6\right)+5\times \left(3i\right)+5i\left(-6\right)+5\times 3\left(-1\right) өрнегінде көбейту операциясын орындаңыз.
Re(\frac{-30-15+\left(15-30\right)i}{45})
Мына сандардағы нақты және жорамал бөліктерді біріктіріңіз: -30+15i-30i-15.
Re(\frac{-45-15i}{45})
-30-15+\left(15-30\right)i өрнегінде қосу операциясын орындаңыз.
Re(-1-\frac{1}{3}i)
-1-\frac{1}{3}i нәтижесін алу үшін, -45-15i мәнін 45 мәніне бөліңіз.
-1
-1-\frac{1}{3}i санының нақты бөлігі — -1.