Негізгі мазмұнды өткізіп жіберу
Есептеу
Tick mark Image

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

\frac{2}{\left(3+\sqrt{-5}\right)\times 3}
\frac{\frac{2}{3+\sqrt{-5}}}{3} өрнегін бір бөлшек ретінде көрсету.
\frac{2}{9+3\sqrt{-5}}
3+\sqrt{-5} мәнін 3 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
\frac{2\left(9-3\sqrt{-5}\right)}{\left(9+3\sqrt{-5}\right)\left(9-3\sqrt{-5}\right)}
Алым мен бөлімді 9-3\sqrt{-5} санына көбейту арқылы \frac{2}{9+3\sqrt{-5}} бөлімінің иррационалдығынан құтылыңыз.
\frac{2\left(9-3\sqrt{-5}\right)}{9^{2}-\left(3\sqrt{-5}\right)^{2}}
\left(9+3\sqrt{-5}\right)\left(9-3\sqrt{-5}\right) өрнегін қарастырыңыз. Көбейтуді мына ереженің көмегімен квадраттар айырмасына айналдыруға болады: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(9-3\sqrt{-5}\right)}{81-\left(3\sqrt{-5}\right)^{2}}
2 дәреже көрсеткішінің 9 мәнін есептеп, 81 мәнін алыңыз.
\frac{2\left(9-3\sqrt{-5}\right)}{81-3^{2}\left(\sqrt{-5}\right)^{2}}
"\left(3\sqrt{-5}\right)^{2}" жаю.
\frac{2\left(9-3\sqrt{-5}\right)}{81-9\left(\sqrt{-5}\right)^{2}}
2 дәреже көрсеткішінің 3 мәнін есептеп, 9 мәнін алыңыз.
\frac{2\left(9-3\sqrt{-5}\right)}{81-9\left(-5\right)}
2 дәреже көрсеткішінің \sqrt{-5} мәнін есептеп, -5 мәнін алыңыз.
\frac{2\left(9-3\sqrt{-5}\right)}{81-\left(-45\right)}
-45 шығару үшін, 9 және -5 сандарын көбейтіңіз.
\frac{2\left(9-3\sqrt{-5}\right)}{81+45}
45 шығару үшін, -1 және -45 сандарын көбейтіңіз.
\frac{2\left(9-3\sqrt{-5}\right)}{126}
126 мәнін алу үшін, 81 және 45 мәндерін қосыңыз.
\frac{1}{63}\left(9-3\sqrt{-5}\right)
\frac{1}{63}\left(9-3\sqrt{-5}\right) нәтижесін алу үшін, 2\left(9-3\sqrt{-5}\right) мәнін 126 мәніне бөліңіз.
\frac{1}{63}\times 9+\frac{1}{63}\left(-3\right)\sqrt{-5}
\frac{1}{63} мәнін 9-3\sqrt{-5} мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
\frac{9}{63}+\frac{1}{63}\left(-3\right)\sqrt{-5}
\frac{9}{63} шығару үшін, \frac{1}{63} және 9 сандарын көбейтіңіз.
\frac{1}{7}+\frac{1}{63}\left(-3\right)\sqrt{-5}
9 мәнін шегеру және алу арқылы \frac{9}{63} үлесін ең аз мәнге азайтыңыз.
\frac{1}{7}+\frac{-3}{63}\sqrt{-5}
\frac{-3}{63} шығару үшін, \frac{1}{63} және -3 сандарын көбейтіңіз.
\frac{1}{7}-\frac{1}{21}\sqrt{-5}
3 мәнін шегеру және алу арқылы \frac{-3}{63} үлесін ең аз мәнге азайтыңыз.