Негізгі мазмұнды өткізіп жіберу
Есептеу
Tick mark Image
Көбейткіштерге жіктеу
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

\frac{\left(\sqrt{3}\right)^{2}+4x\times \left(\frac{1}{\sqrt{2}}\right)^{2}+3\times 5x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Кез келген санды 1-ге бөлген кезде, сол санның өзі шығады.
\frac{3+4x\times \left(\frac{1}{\sqrt{2}}\right)^{2}+3\times 5x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{3} квадраты 3 болып табылады.
\frac{3+4x\times \left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}+3\times 5x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Алым мен бөлімді \sqrt{2} санына көбейту арқылы \frac{1}{\sqrt{2}} бөлімінің иррационалдығынан құтылыңыз.
\frac{3+4x\times \left(\frac{\sqrt{2}}{2}\right)^{2}+3\times 5x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{2} квадраты 2 болып табылады.
\frac{3+4x\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times 5x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\frac{\sqrt{2}}{2} дәрежесін арттыру үшін, алымы мен бөлімінің дәрежелерін арттырып, содан кейін бөліңіз.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+3\times 5x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
4\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} өрнегін бір бөлшек ретінде көрсету.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+15x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
15 шығару үшін, 3 және 5 сандарын көбейтіңіз.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+15x\times \left(\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Алым мен бөлімді \sqrt{3} санына көбейту арқылы \frac{2}{\sqrt{3}} бөлімінің иррационалдығынан құтылыңыз.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+15x\times \left(\frac{2\sqrt{3}}{3}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{3} квадраты 3 болып табылады.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+15x\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\frac{2\sqrt{3}}{3} дәрежесін арттыру үшін, алымы мен бөлімінің дәрежелерін арттырып, содан кейін бөліңіз.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+15x\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}\times 0}{2+2-\left(\sqrt{3}\right)^{2}}
2 дәреже көрсеткішінің 0 мәнін есептеп, 0 мәнін алыңыз.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
0 шығару үшін, 15 және 0 сандарын көбейтіңіз.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{2^{2}\left(\sqrt{3}\right)^{2}}{3^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
"\left(2\sqrt{3}\right)^{2}" жаю.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
2 дәреже көрсеткішінің 2 мәнін есептеп, 4 мәнін алыңыз.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{4\times 3}{3^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{3} квадраты 3 болып табылады.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{12}{3^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
12 шығару үшін, 4 және 3 сандарын көбейтіңіз.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{12}{9}}{2+2-\left(\sqrt{3}\right)^{2}}
2 дәреже көрсеткішінің 3 мәнін есептеп, 9 мәнін алыңыз.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{4}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
3 мәнін шегеру және алу арқылы \frac{12}{9} үлесін ең аз мәнге азайтыңыз.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x}{2+2-\left(\sqrt{3}\right)^{2}}
0 шығару үшін, 0 және \frac{4}{3} сандарын көбейтіңіз.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0}{2+2-\left(\sqrt{3}\right)^{2}}
Кез келген санның нөлге көбейтіндісі нөлге тең болады.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x}{2+2-\left(\sqrt{3}\right)^{2}}
3 мәнін алу үшін, 3 және 0 мәндерін қосыңыз.
\frac{3+\frac{4\times 2}{2^{2}}x}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{2} квадраты 2 болып табылады.
\frac{3+\frac{8}{2^{2}}x}{2+2-\left(\sqrt{3}\right)^{2}}
8 шығару үшін, 4 және 2 сандарын көбейтіңіз.
\frac{3+\frac{8}{4}x}{2+2-\left(\sqrt{3}\right)^{2}}
2 дәреже көрсеткішінің 2 мәнін есептеп, 4 мәнін алыңыз.
\frac{3+2x}{2+2-\left(\sqrt{3}\right)^{2}}
2 нәтижесін алу үшін, 8 мәнін 4 мәніне бөліңіз.
\frac{3+2x}{4-\left(\sqrt{3}\right)^{2}}
4 мәнін алу үшін, 2 және 2 мәндерін қосыңыз.
\frac{3+2x}{4-3}
\sqrt{3} квадраты 3 болып табылады.
\frac{3+2x}{1}
1 мәнін алу үшін, 4 мәнінен 3 мәнін алып тастаңыз.
3+2x
Кез келген санды 1-ге бөлген кезде, сол санның өзі шығады.