Негізгі мазмұнды өткізіп жіберу
Есептеу
Tick mark Image
Көбейткіштерге жіктеу
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

\left(x^{2}-1\right)^{2}-\left(2+x^{2}\right)^{2}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
\left(x+1\right)\left(x-1\right) өрнегін қарастырыңыз. Көбейтуді мына ереженің көмегімен квадраттар айырмасына айналдыруға болады: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 санының квадратын шығарыңыз.
\left(x^{2}\right)^{2}-2x^{2}+1-\left(2+x^{2}\right)^{2}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
\left(x^{2}-1\right)^{2} формуласын жіктеу үшін \left(a-b\right)^{2}=a^{2}-2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
x^{4}-2x^{2}+1-\left(2+x^{2}\right)^{2}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
Бір санның дәрежесін басқа дәрежеге көтеру үшін, дәреже көрсеткіштерін көбейтіңіз. 4 көрсеткішін алу үшін, 2 және 2 мәндерін көбейтіңіз.
x^{4}-2x^{2}+1-\left(4+4x^{2}+\left(x^{2}\right)^{2}\right)+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
\left(2+x^{2}\right)^{2} формуласын жіктеу үшін \left(a+b\right)^{2}=a^{2}+2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
x^{4}-2x^{2}+1-\left(4+4x^{2}+x^{4}\right)+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
Бір санның дәрежесін басқа дәрежеге көтеру үшін, дәреже көрсеткіштерін көбейтіңіз. 4 көрсеткішін алу үшін, 2 және 2 мәндерін көбейтіңіз.
x^{4}-2x^{2}+1-4-4x^{2}-x^{4}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
4+4x^{2}+x^{4} теңдеуінің қарсы мәнін табу үшін, әр мүшенің қарсы мәнін табыңыз.
x^{4}-2x^{2}-3-4x^{2}-x^{4}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
-3 мәнін алу үшін, 1 мәнінен 4 мәнін алып тастаңыз.
x^{4}-6x^{2}-3-x^{4}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
-2x^{2} және -4x^{2} мәндерін қоссаңыз, -6x^{2} мәні шығады.
-6x^{2}-3+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
x^{4} және -x^{4} мәндерін қоссаңыз, 0 мәні шығады.
-6x^{2}-3+\left(3x-\frac{9}{2}\right)\left(2x+3\right)
\frac{3}{2} мәнін 2x-3 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
-6x^{2}-3+6x^{2}-\frac{27}{2}
3x-\frac{9}{2} мәнін 2x+3 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз және ұқсас мүшелерді біріктіріңіз.
-3-\frac{27}{2}
-6x^{2} және 6x^{2} мәндерін қоссаңыз, 0 мәні шығады.
-\frac{33}{2}
-\frac{33}{2} мәнін алу үшін, -3 мәнінен \frac{27}{2} мәнін алып тастаңыз.
\frac{2\left(\left(x+1\right)\left(x-1\right)\right)^{2}-2\left(2+x^{2}\right)^{2}+3\left(2x-3\right)\left(2x+3\right)}{2}
\frac{1}{2} ортақ көбейткішін жақшаның сыртына шығарыңыз.
-\frac{33}{2}
Қысқартыңыз.