Негізгі мазмұнды өткізіп жіберу
Есептеу
Tick mark Image
Жаю
Tick mark Image

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

\frac{\left(a^{2}-2a-a+2\right)\left(a-3\right)-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}\times 30
Әрбір a-1 мүшесін әрбір a-2 мүшесіне көбейту арқылы дистрибутивтілік сипатын қолданыңыз.
\frac{\left(a^{2}-3a+2\right)\left(a-3\right)-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}\times 30
-2a және -a мәндерін қоссаңыз, -3a мәні шығады.
\frac{a^{3}-3a^{2}-3a^{2}+9a+2a-6-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}\times 30
Әрбір a^{2}-3a+2 мүшесін әрбір a-3 мүшесіне көбейту арқылы дистрибутивтілік сипатын қолданыңыз.
\frac{a^{3}-6a^{2}+9a+2a-6-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}\times 30
-3a^{2} және -3a^{2} мәндерін қоссаңыз, -6a^{2} мәні шығады.
\frac{a^{3}-6a^{2}+11a-6-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}\times 30
9a және 2a мәндерін қоссаңыз, 11a мәні шығады.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{2}+2a+a+2\right)\left(a+3\right)}{-4}\times 30
Әрбір a+1 мүшесін әрбір a+2 мүшесіне көбейту арқылы дистрибутивтілік сипатын қолданыңыз.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{2}+3a+2\right)\left(a+3\right)}{-4}\times 30
2a және a мәндерін қоссаңыз, 3a мәні шығады.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{3}+3a^{2}+3a^{2}+9a+2a+6\right)}{-4}\times 30
Әрбір a^{2}+3a+2 мүшесін әрбір a+3 мүшесіне көбейту арқылы дистрибутивтілік сипатын қолданыңыз.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{3}+6a^{2}+9a+2a+6\right)}{-4}\times 30
3a^{2} және 3a^{2} мәндерін қоссаңыз, 6a^{2} мәні шығады.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{3}+6a^{2}+11a+6\right)}{-4}\times 30
9a және 2a мәндерін қоссаңыз, 11a мәні шығады.
\frac{a^{3}-6a^{2}+11a-6-a^{3}-6a^{2}-11a-6}{-4}\times 30
a^{3}+6a^{2}+11a+6 теңдеуінің қарсы мәнін табу үшін, әр мүшенің қарсы мәнін табыңыз.
\frac{-6a^{2}+11a-6-6a^{2}-11a-6}{-4}\times 30
a^{3} және -a^{3} мәндерін қоссаңыз, 0 мәні шығады.
\frac{-12a^{2}+11a-6-11a-6}{-4}\times 30
-6a^{2} және -6a^{2} мәндерін қоссаңыз, -12a^{2} мәні шығады.
\frac{-12a^{2}-6-6}{-4}\times 30
11a және -11a мәндерін қоссаңыз, 0 мәні шығады.
\frac{-12a^{2}-12}{-4}\times 30
-12 мәнін алу үшін, -6 мәнінен 6 мәнін алып тастаңыз.
\frac{\left(-12a^{2}-12\right)\times 30}{-4}
\frac{-12a^{2}-12}{-4}\times 30 өрнегін бір бөлшек ретінде көрсету.
\frac{-360a^{2}-360}{-4}
-12a^{2}-12 мәнін 30 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
\frac{\left(a^{2}-2a-a+2\right)\left(a-3\right)-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}\times 30
Әрбір a-1 мүшесін әрбір a-2 мүшесіне көбейту арқылы дистрибутивтілік сипатын қолданыңыз.
\frac{\left(a^{2}-3a+2\right)\left(a-3\right)-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}\times 30
-2a және -a мәндерін қоссаңыз, -3a мәні шығады.
\frac{a^{3}-3a^{2}-3a^{2}+9a+2a-6-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}\times 30
Әрбір a^{2}-3a+2 мүшесін әрбір a-3 мүшесіне көбейту арқылы дистрибутивтілік сипатын қолданыңыз.
\frac{a^{3}-6a^{2}+9a+2a-6-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}\times 30
-3a^{2} және -3a^{2} мәндерін қоссаңыз, -6a^{2} мәні шығады.
\frac{a^{3}-6a^{2}+11a-6-\left(a+1\right)\left(a+2\right)\left(a+3\right)}{-4}\times 30
9a және 2a мәндерін қоссаңыз, 11a мәні шығады.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{2}+2a+a+2\right)\left(a+3\right)}{-4}\times 30
Әрбір a+1 мүшесін әрбір a+2 мүшесіне көбейту арқылы дистрибутивтілік сипатын қолданыңыз.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{2}+3a+2\right)\left(a+3\right)}{-4}\times 30
2a және a мәндерін қоссаңыз, 3a мәні шығады.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{3}+3a^{2}+3a^{2}+9a+2a+6\right)}{-4}\times 30
Әрбір a^{2}+3a+2 мүшесін әрбір a+3 мүшесіне көбейту арқылы дистрибутивтілік сипатын қолданыңыз.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{3}+6a^{2}+9a+2a+6\right)}{-4}\times 30
3a^{2} және 3a^{2} мәндерін қоссаңыз, 6a^{2} мәні шығады.
\frac{a^{3}-6a^{2}+11a-6-\left(a^{3}+6a^{2}+11a+6\right)}{-4}\times 30
9a және 2a мәндерін қоссаңыз, 11a мәні шығады.
\frac{a^{3}-6a^{2}+11a-6-a^{3}-6a^{2}-11a-6}{-4}\times 30
a^{3}+6a^{2}+11a+6 теңдеуінің қарсы мәнін табу үшін, әр мүшенің қарсы мәнін табыңыз.
\frac{-6a^{2}+11a-6-6a^{2}-11a-6}{-4}\times 30
a^{3} және -a^{3} мәндерін қоссаңыз, 0 мәні шығады.
\frac{-12a^{2}+11a-6-11a-6}{-4}\times 30
-6a^{2} және -6a^{2} мәндерін қоссаңыз, -12a^{2} мәні шығады.
\frac{-12a^{2}-6-6}{-4}\times 30
11a және -11a мәндерін қоссаңыз, 0 мәні шығады.
\frac{-12a^{2}-12}{-4}\times 30
-12 мәнін алу үшін, -6 мәнінен 6 мәнін алып тастаңыз.
\frac{\left(-12a^{2}-12\right)\times 30}{-4}
\frac{-12a^{2}-12}{-4}\times 30 өрнегін бір бөлшек ретінде көрсету.
\frac{-360a^{2}-360}{-4}
-12a^{2}-12 мәнін 30 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.